#include "GMath.h" GVector3::GVector3(float x, float y, float z) { v[0] = x; v[1] = y; v[2] = z; } GVector3::GVector3(const GVector3 & copy) { v[0] = copy.v[0]; v[1] = copy.v[1]; v[2] = copy.v[2]; } GVector3 & GVector3::operator=(const GVector3 & rhs) { v[0] = rhs.v[0]; v[1] = rhs.v[1]; v[2] = rhs.v[2]; return *this; } GVector3 GVector3::operator+(const GVector3 & rhs) const { GVector3 ret; ret.v[0] = v[0] + rhs.v[0]; ret.v[1] = v[1] + rhs.v[1]; ret.v[2] = v[2] + rhs.v[2]; return ret; } GVector3 GVector3::operator-(const GVector3 & rhs) const { GVector3 ret; ret.v[0] = v[0] - rhs.v[0]; ret.v[1] = v[1] - rhs.v[1]; ret.v[2] = v[2] - rhs.v[2]; return ret; } GVector3 operator*(const GVector3 & lhs, const float & k) { GVector3 ret; ret.v[0] = lhs.v[0] * k; ret.v[1] = lhs.v[1] * k; ret.v[2] = lhs.v[2] * k; return ret; } GVector3 operator*(const float & k, const GVector3& rhs) { GVector3 ret; ret.v[0] = rhs.v[0] * k; ret.v[1] = rhs.v[1] * k; ret.v[2] = rhs.v[2] * k; return ret; } GVector3 operator/(const GVector3 & lhs, const float & k) { GVector3 ret; assert(k != 0); ret.v[0] = lhs.v[0] / k; ret.v[1] = lhs.v[1] / k; ret.v[2] = lhs.v[2] / k; return ret; } float norm(const GVector3 & v) { return SQRT(v.v[0] * v.v[0] + v.v[1] * v.v[1] + v.v[2] * v.v[2]); } GVector3 & GVector3::normalize() { float len = norm(*this); if (len > PRECISION) { v[0] /= len; v[1] /= len; v[2] /= len; } return *this; } float GVector3::operator*(const GVector3 & rhs) const { float ret; ret = v[0] * rhs.v[0] + v[1] * rhs.v[1] +v[2] * rhs.v[2]; return ret; } GVector3 proj(const GVector3 & p, const GVector3 & q) { return (p*q) / SQR(norm(q)) * q; } GVector3 perp(const GVector3 & p, const GVector3 & q) { return p - proj(p,q); } GVector3 GVector3::operator^(const GVector3 & rhs) const { GVector3 ret; ret.v[0] = v[1] * rhs.v[2] - v[2] * rhs.v[1]; ret.v[1] = v[2] * rhs.v[0] - v[0] * rhs.v[2]; ret.v[2] = v[0] * rhs.v[1] - v[1] * rhs.v[0]; return ret; } GVector3 & GVector3::Set(const float & x, const float & y, const float & z) { v[0] = x; v[1] = y; v[2] = z; return *this; } float distance(const GVector3 & v, const GVector3 u) { float ret = 0.0; float a = v.v[0] - u.v[0]; float b = v.v[1] - u.v[1]; float c = v.v[2] - u.v[2]; ret = SQRT(SQR(a) + SQR(b) + SQR(c)); return ret; } GVector3 & GVector3::operator+=(const GVector3 & rhs) { v[0] += rhs.v[0]; v[1] += rhs.v[1]; v[2] += rhs.v[2]; return *this; } GVector3 & GVector3::operator-=(const GVector3 & rhs) { v[0] -= rhs.v[0]; v[1] -= rhs.v[1]; v[2] -= rhs.v[2]; return *this; } ostream & operator<<(ostream & os, const GVector3 & v) { os << "[" << setw(2) << v.v[0] << ", " << setw(2) << v.v[1] << ", " << setw(2) << v.v[2] << "]"; return os; } GVector3 & GVector3::operator*=(const float & k) { v[0] *= k; v[1] *= k; v[2] *= k; return *this; } GVector3 & GVector3::operator/=(const float & k) { v[0] /= k; v[1] /= k; v[2] /= k; return *this; } GVector3 & GVector3::operator^=(const GVector3 & rhs) { v[0] = v[1] * rhs.v[2] - v[2] * rhs.v[1]; v[1] = v[2] * rhs.v[0] - v[0] * rhs.v[2]; v[2] = v[0] * rhs.v[1] - v[1] * rhs.v[0]; return *this; } bool GVector3::operator==(const GVector3 rhs) const { return !((*this) != rhs); } bool GVector3::operator!=(const GVector3 rhs) const { return (!EQ(v[0], rhs.v[0], PRECISION) || !EQ(v[1], rhs.v[1], PRECISION) || !EQ(v[2], rhs.v[2], PRECISION)); } GVector3 GVector3::operator+() const { return *this; } GVector3 GVector3::operator-() const { return *this * -1; } float & GVector3::operator[](const int & idx) { return v[idx]; } const float GVector3::operator[](const int & idx) const { return v[idx]; } //----GVector----// GVector::GVector(int dim) { n = dim; v = new float[n]; ARR_ZERO(v, n); } GVector::GVector(int dim, double x, ...) { n = dim; v = new float[n]; va_list ap; va_start(ap, dim); for (int i = 0; i < n; i++) { v[i] = (float)va_arg(ap, double); } va_end(ap); } GVector::GVector(const GVector3 & copy) { n = 3; v = new float[3]; v[0] = copy[0]; v[1] = copy[1]; v[2] = copy[2]; } GVector::GVector(const GVector & copy) { n = copy.n; v = new float[n]; memcpy(v, copy.v, n * sizeof(float)); } GVector::~GVector() { if (v) { delete[] v; } v = NULL; } GVector & GVector::Set(double x, ...) { v[0] = (float)x; va_list ap; va_start(ap, x); for (int i = 1; i < n; i++) { v[i] = (float)va_arg(ap, double); } va_end(ap); return *this; } GVector & GVector::Set(float * p) { memcpy(v, p, sizeof(float) * n); return *this; } GVector & GVector::operator=(const GVector & rhs) { if (v) { delete[] v; } n = rhs.n; v = new float[n]; memcpy(v, rhs.v, n * sizeof(float)); return *this; } GVector & GVector::operator+=(const GVector & rhs) { assert(n = rhs.n); for (int i = 0; i < n; i++) { v[i] += rhs.v[i]; } return *this; } GVector & GVector::operator-=(const GVector & rhs) { assert(n = rhs.n); for (int i = 0; i < n; i++) { v[i] -= rhs.v[i]; } return *this; } GVector & GVector::operator+=(const float & k) { for (int i = 0; i < n; i++) { v[i] += k; } return *this; } GVector & GVector::operator-=(const float & k) { for (int i = 0; i < n; i++) { v[i] -= k; } return *this; } GVector & GVector::operator*=(const float & k) { for (int i = 0; i < n; i++) { v[i] *= k; } return *this; } GVector & GVector::operator/=(const float & k) { for (int i = 0; i < n; i++) { v[i] /= k; } return *this; } bool GVector::operator==(const GVector & rhs) const { return ((*this) == rhs); } bool GVector::operator!=(const GVector & rhs) const { assert(n == rhs.n); for (int i = 0; i < n; i++) { if (!EQ(v[i], rhs.v[i], PRECISION)) { return true; } } return false; } GVector GVector::operator+() const { return *this; } GVector GVector::operator-() const { return *this * -1; } GVector GVector::operator+(const GVector & rhs) const { assert(n == rhs.n); GVector ret = GVector(n); for (int i = 0; i < n; i++) { ret.v[i] = v[i] + rhs.v[i]; } return ret; } GVector GVector::operator-(const GVector & rhs) const { assert(n == rhs.n); GVector ret = GVector(n); for (int i = 0; i < n; i++) { ret.v[i] = v[i] - rhs.v[i]; } return ret; } float GVector::operator*(const GVector & rhs) const { assert(n == rhs.n); float ret = 0; for (int i = 0; i < n; i++) { ret += v[i] * rhs.v[i]; } return ret; } GVector GVector::operator/(const float & k) const { GVector ret = GVector(n); for (int i = 0; i < n; i++) { ret.v[i] = v[i]/k; } return ret; } float & GVector::operator[](const int & idx) { assert(idx >= 0 && idx <= n); return v[idx]; } const float & GVector::operator[](const int & idx) const { assert(idx >= 0 && idx <= n); return v[idx]; } GVector & GVector::Nornalize() { float m = norm(*this); for (int i = 0; i < n; i++) { v[i] /= m; } return *this; } int GVector::GetDim() const { return n; } GVector operator*(const float & k, const GVector & rhs) { GVector ret(rhs.n); for (int i = 0; i < ret.n; i++) { ret.v[i] *= k; } return ret; } GVector operator*(const GVector & lhs, const float & k) { GVector ret(lhs.n); for (int i = 0; i < ret.n; i++) { ret.v[i] *= k; } return ret; } float norm(const GVector & v) { float ret = 0; for (int i = 0; i < v.n; i++) { ret += SQR(v.v[i]); } ret = SQRT(ret); return ret; } float distance(const GVector & v, const GVector & u) { return norm(v - u); } ostream & operator<<(ostream & os, const GVector & v) { os << "[ "; for (int i = 0; i < v.n; i++) { os << setw(5) << v.v[i]; if (i != v.n - 1) { os << ", "; } } os << " ]" << endl; return os; } GMatrix::GMatrix(int row, int col, float * elem) { r = row; c = col; m = new float[r*c]; if (elem) { memcpy(m, elem, sizeof(float)*r*c); } else { ARR_ZERO(m, r*c); } } GMatrix::GMatrix(const GMatrix & copy) { r = copy.r; c = copy.c; m = new float[r*c]; memcpy(m, copy.m, sizeof(float)*r*c); } GMatrix::~GMatrix() { if (m) { delete[] m; } m = NULL; } GMatrix & GMatrix::operator=(const GMatrix & rhs) { if (m) { delete[] m; } r = rhs.r; c = rhs.c; m = new float[r*c]; memcpy(m, rhs.m, sizeof(float)*r*c); return *this; } GMatrix & GMatrix::operator+=(const GMatrix & rhs) { assert(r == rhs.r && c == rhs.c); for (int i = 0; i < r*c; i++) { m[i] += rhs.m[i]; } return *this; } GMatrix & GMatrix::operator-=(const GMatrix & rhs) { assert(r == rhs.r && c == rhs.c); for (int i = 0; i < r*c; i++) { m[i] -= rhs.m[i]; } return *this; } GMatrix & GMatrix::operator*=(const float & k) { for (int i = 0; i < r*c; i++) { m[i] *= k; } return *this; } GMatrix & GMatrix::operator*=(const GMatrix & rhs) { assert(c == rhs.r); c = rhs.c; float* p = new float[r*c]; ARR_ZERO(p, r*c) ; for (int i = 0; i < r; i++) { for (int j = 0; j < c; j++) { for (int k = 0; k < rhs.r; k++) { p[i*c + j] += m[i*rhs.r + k] * rhs.m[k*c + j]; } } } delete[] m; m = p; return *this; } GMatrix & GMatrix::operator/=(const float & k) { assert(k != 0); for (int i = 0; i < r*c; i++) { m[i] /= k; } return *this; } GMatrix GMatrix::operator+() const { return *this; } GMatrix GMatrix::operator-() const { return *this*-1; } GMatrix GMatrix::operator+(const GMatrix & rhs) const { assert(r == rhs.r && c == rhs.c); GMatrix ret(*this); ret += rhs; return ret; } GMatrix GMatrix::operator-(const GMatrix & rhs) const { assert(r == rhs.r && c == rhs.c); GMatrix ret(*this); ret -= rhs; return ret; } GMatrix GMatrix::operator*(const GMatrix & rhs) const { assert(c == rhs.r); GMatrix ret(*this); ret *= rhs; return ret; } GMatrix GMatrix::operator/(const float & k) const { GMatrix ret(*this); ret /= k; return ret; } GMatrix operator*(const GMatrix & lhs, const float & k) { GMatrix ret(lhs); ret *= k; return ret; } GMatrix operator*(const float& k, const GMatrix & rhs) { GMatrix ret(rhs); ret *= k; return ret; } GVector operator*(const GMatrix & m, const GVector & v) { assert(m.c == v.n); GVector ret(m.r); for (int i = 0; i < m.r; i++) { for (int j = 0; j < m.c; j++) { ret.v[i] += m.m[i*m.c + j] * v.v[j]; } } return ret; } GMatrix operator*(const GVector & v, const GMatrix & m) { assert(m.r == 1); GMatrix ret(v.n, m.c); for (int i = 0; i < v.n; i++) { for (int j = 0; j < m.c; j++) { ret.m[i*m.c + j] = v.v[i] * m.m[j]; } } return ret; } bool GMatrix::operator==(const GMatrix & rhs) const { if (r != rhs.r || c != rhs.c) { return false; } for (int i = 0; i < r*c; i++) { if (abs(m[i] - rhs.m[i]) > PRECISION) { return false; } } return true; } bool GMatrix::operator!=(const GMatrix & rhs) const { if (r != rhs.r || c != rhs.c) { return true; } for (int i = 0; i < r*c; i++) { if (abs(m[i] - rhs.m[i]) > PRECISION) { return true; } } return false; } float * GMatrix::operator[](const int idx) { assert(idx >= 0 && idx < r); return &m[idx*c]; } const float * GMatrix::operator[](const int idx) const { assert(idx >= 0 && idx < r); return &m[idx*c]; } GMatrix & GMatrix::SetInverse() { //只有方阵才能求逆 assert(r == c); //并不是所有矩阵都有逆矩阵,非奇异矩阵才有逆矩阵,也就是行列式不能为0 float det = Det(*this); assert(det != 0); //构建增广矩阵 int exc = c * 2; GMatrix exM(r, exc); int i, j = 0; for (i = 0; i < exM.GetRowNum(); i++) { for (j = 0; j < exM.GetColNum(); j++) { if (j < c) { exM[i][j] = m[i*c + j]; } else { if (j - c == i) { exM[i][j] = 1.0f; } } } } exM = ReduceRowEchelonForm(exM); for (i = 0; i < exM.GetRowNum(); i++) { for (j = 0; j < exM.GetColNum(); j++) { if (j >= c) { m[i*c + (j - c)] = exM[i][j]; } } } return *this; } GMatrix & GMatrix::SetTranspose() { int i, j; if (r == c) { //Spuare matrix for (i = 0; i < r; i++) { for (j = i+1; j < c; j++) { SWAP(float, m[i*c + j], m[j* r + i]) } } } else { float *p = new float[r*c]; memcpy(p, m, sizeof(float)*r*c); SWAP(int, r, c); for (i = 0; i < r; i++) { for (j = 0; j < c; j++) { m[i*c + j] = p[j*r + i]; } } delete[] p; p = NULL; } return *this; } GMatrix & GMatrix::SetIdentity() { int min = MIN(r, c); SetZeros(); for (int i = 0; i < min; i++) { m[i*c + i] = 1.0f; } return *this; } GMatrix & GMatrix::SetZeros() { memset(m, 0, sizeof(float)*r*c); return *this; } ostream & operator<<(ostream & os, const GMatrix & m) { float r = 0.0f; for (int i = 0; i < m.r; i++) { os << "|"; for (int j = 0; j < m.c; j++) { r = EQ_ZERO(m.m[i*m.c + j], PRECISION) ? 0 : m.m[i*m.c + j]; os << setw(6) << r << " "; } os << " |" << endl; } return os; } GMatrix & GMatrix::SetRowVec(const int idx, const GVector & v) { assert(idx < r && v.n == c); for (int i = 0; i < c; i++) { m[idx*c + i] = v.v[i]; } return *this; } GMatrix & GMatrix::SetColVec(const int idx, const GVector & v) { assert(idx < c && v.n == r); for (int i = 0; i < r; i++) { m[i*c + idx] = v.v[i]; } return *this; } GVector GMatrix::GetRowVec(const int idx) const { assert(idx < r); GVector ret(c); for (int i = 0; i < c; i++) { ret.v[i] = m[idx*c + i]; } return ret; } GVector GMatrix::GetColVec(const int idx) const { assert(idx < c); GVector ret(r); for (int i = 0; i < r; i++) { ret.v[i] = m[i*c + idx]; } return ret; } GMatrix & GMatrix::ExchangeRows(const int idx0, const int idx1) { GVector tmp(c); tmp = GetRowVec(idx0); SetRowVec(idx0, GetRowVec(idx1)); SetRowVec(idx1, tmp); return *this; } GMatrix & GMatrix::ExchangeCols(const int idx0, const int idx1) { GVector tmp(r); tmp = GetColVec(idx0); SetColVec(idx0, GetColVec(idx1)); SetColVec(idx1, tmp); return *this; } int GMatrix::GetRowNum() const { return r; } int GMatrix::GetColNum() const { return c; } bool GMatrix::IsSquare() const { return (r == c) ? true : false; } GMatrix RowEchelonForm(const GMatrix & m) { int i, j, k; int r = m.GetRowNum(); int c = m.GetColNum(); int n = MIN(r, c); GMatrix t(m); int shift = 0; for (i = 0; i < n; i++) { float max = ABS(t[i][i + shift]); int privot_idx = i;//行号 //找出 绝对值最大的的数 和 它所在行 for (j = i+1; j < n; j++) { if (max < ABS(t[j][i + shift])) { max = ABS(t[j][i + shift]); privot_idx = j; } } //如果最大值是0的话,那么直接跳过这一列 if (EQ_ZERO(max, PRECISION)) { shift++; i--; //记得要返回上一列 continue; } //如果最大值所在行不是首算行,那就要交换 if (i != privot_idx) { t.ExchangeRows(i, privot_idx); } //取出最大值 float s = t[i][i + shift];//这是因为上一步已经把最大值行交换的首算行了 //产生首1 for (j = i + shift; j < c; j++) { t[i][j] = t[i][j] / s; } //把当前列,除首1以下的值都变成0 for (j = i + 1; j < r; j++) { s = t[j][i + shift]; for (k = i + shift; k < c; k++) { t[j][k] = t[j][k] - s * t[i][k]; } } } return t; } GMatrix ReduceRowEchelonForm(const GMatrix & m) { int i, j, k; int r = m.GetRowNum(); int c = m.GetColNum(); int n = MIN(r, c); GMatrix t(m); int shift = 0; for (i = 0; i < n; i++) { float max = ABS(t[i][i + shift]); int privot_idx = i;//行号 //找出 绝对值最大的的数 和 它所在行 for (j = i + 1; j < n; j++) { if (max < ABS(t[j][i + shift])) { max = ABS(t[j][i + shift]); privot_idx = j; } } //如果最大值是0的话,那么直接跳过这一列 if (EQ_ZERO(max, PRECISION)) { shift++; i--; //记得要返回上一列 continue; } //如果最大值所在行不是首算行,那就要交换 if (i != privot_idx) { t.ExchangeRows(i, privot_idx); } //取出最大值 float s = t[i][i + shift];//这是因为上一步已经把最大值行交换的首算行了 //产生首1 for (j = i + shift; j < c; j++) { t[i][j] = t[i][j] / s; } //把当前列,除首1外的值都变成0 for (j = 0; j < r; j++) { if (i == j) continue; s = t[j][i + shift]; for (k = i + shift; k < c; k++) { t[j][k] = t[j][k] - s * t[i][k]; } } } return t; } float * from_arr(const GMatrix & m) { return m.m; } int Rank(const GMatrix & m) { int i, r, rank = 0; r = m.GetRowNum(); GMatrix t = RowEchelonForm(m); for (i = 0; i < r; i++) { GVector rVec = t.GetRowVec(i); if (!EQ_ZERO(norm(rVec), PRECISION)) { rank++; } } return rank; } int Nullity(const GMatrix & m) { int rank = Rank(m); return m.GetColNum() - rank; } GMatrix Mij(const GMatrix & m, int rom, int col) { int i,j = 0; int r = m.GetRowNum(); int c = m.GetColNum(); assert(r == c);//方阵 assert(rom < r && col < c); //余子式的行数和列数 int nR = r - 1; int nC = c - 1; GMatrix ret(nR, nC); nR = 0; for (i = 0; i < r; i++) { nC = 0; if (i == rom) { continue; } for (j = 0; j < c; j++) { if (j == col) { continue; } ret[nR][nC] = m[i][j]; nC++; } nR++; } return ret; } GMatrix Cij(const GMatrix & m, int r, int c) { GMatrix ret = Mij(m, r, c); int t = pow(-1, r + c); if (t == -1) { for (int i = 0; i < ret.GetColNum(); i++) { ret[0][i] = -ret[0][i];//行列式运算的-号只能影响一行 } } return ret; } float Det(const GMatrix & m) { int i = 0; int r = m.GetRowNum(); int c = m.GetColNum(); assert(r == c);//方阵才有行列式 float ret = 0.0f; if (r == 1) { ret = m[0][0]; } else { for (i = 0; i < c; i++) { //GMatrix t = Mij(m, 0, i); //ret += pow(-1, 0+ i) * m[0][i] * Det(t); GMatrix t = Cij(m, 0, i); //cout << t << endl; ret += m[0][i] * Det(t); } } return ret; } GLine::GLine(const GPoint3 & _p, const GVector3 & _v) { p = _p; v = _v; } GLine::GLine(const GLine & copy) { p = copy.p; v = copy.v; } GLine & GLine::operator=(const GLine & rhs) { p = rhs.p; v = rhs.v; return *this; } GPoint3 GLine::operator()(const float t) const { return p + v*t; } GLine & GLine::SetPt(const GPoint3 & _p) { p = _p; return *this; } GLine & GLine::SetDir(const GVector3 & _v) { v = _v; return *this; } GVector3 GLine::GetPt() const { return p; } GVector3 GLine::GetDir() const { return v; } bool GLine::IsOnLine(const GPoint3 & q) { return EQ_ZERO(dist(q, *this), PRECISION); } float dist(const GPoint3 & q, const GLine & l) { GVector3 u = q - l.p; GVector3 p = proj(u, l.v); return norm(u - p); } GPlane::GPlane(const GVector3 & _n, const GPoint3 & _p) { n = _n; d = -n * _p; } GPlane::GPlane(const GPoint3 & p1, const GPoint3 & p2, const GPoint3 & p3) { n = (p2 - p1) ^ (p3 - p1); d = -n * p1; //是平面上的一点点乘法线再取负号 } GPlane::GPlane(const float & a, const float & b, const float & c, const float & d) { n = GVector3(a, b, c); this->d = d; } GPlane::GPlane(const GPlane & copy) { n = copy.n; d = copy.d; } GPlane& GPlane::operator=(const GPlane & rhs) { n = rhs.n; d = rhs.d; return *this; } GVector3 GPlane::GetNormal() const { return n; } float dist(const GPlane & pi, const GPoint3 & p) { float D; D = (p*pi.n + pi.d) / norm(pi.n); return D; } bool intersect_line_plane(GPoint3 & p, const GLine & l, const GPlane & pi) { //如果直线的方向和平面的法线垂直,则直线和平面平行,没有交点 if (EQ_ZERO((l.v*pi.n), PRECISION)) { return false; } float t = -(l.p*pi.n + pi.d) / (l.v * pi.n); p = l(t); return true; } bool intersect_line_triangle(GPoint3 & p, const GLine & l, const GPoint3 & p1, const GPoint3 & p2, const GPoint3 & p3) { GVector3 e1, e2, u, v, w; float a, b, t, det; e1 = p2 - p1; e2 = p3 - p1; u = l.v ^ e2; det = e1 * u; if (EQ_ZERO(det, PRECISION)) { return false; } w = l.p - p1; a = w * u / det; if (a < 0.0f || a > 1.0f) { return false; } v = w ^ e1; b = l.v * v / det; if (b < 0.0f || b > 1.0f) { return false; } t = e2 * v / det; p = l(t); return true; } GQuater::GQuater(float w, float x, float y, float z) { this->w = w; this->x = x; this->y = y; this->z = z; } GQuater::GQuater(const GQuater & copy) { w = copy.w; x = copy.x; y = copy.y; z = copy.z; } GQuater::GQuater(GVector3 axis, float theta, bool radian) { //q=(cosX, sinX(a,b,c)) float rad, sn, cs; axis.normalize(); if (!radian) { rad = theta * M_PI / 360; //因为旋转的是2倍X,所以这里除以360 } sn = sin(rad); cs = cos(rad); sn = (abs(sn) < PRECISION) ? 0.0f : sn; cs = (abs(cs) < PRECISION) ? 0.0f : cs; w = cs; x = sn * axis[0]; y = sn * axis[1]; z = sn * axis[2]; } GQuater & GQuater::operator=(const GQuater & rhs) { w = rhs.w; x = rhs.x; y = rhs.y; z = rhs.z; return *this; } GQuater & GQuater::operator+=(const GQuater & rhs) { w += rhs.w; x += rhs.x; y += rhs.y; z += rhs.z; return *this; } GQuater & GQuater::operator-=(const GQuater & rhs) { w -= rhs.w; x -= rhs.x; y -= rhs.y; z -= rhs.z; return *this; } GQuater & GQuater::operator*=(const GQuater & rhs) { float nw, nx, ny, nz = 0; nw = w * rhs.w - x*rhs.x - y * rhs.y - z * rhs.z; nx = w * rhs.x + rhs.w*x + y * rhs.z - z * rhs.y; ny = w * rhs.y + rhs.w*y + z * rhs.x - x * rhs.z; nz = w * rhs.z + rhs.w*z + x * rhs.y - y * rhs.x; w = nw; x = nx; y = ny; z = nz; return *this; } GQuater & GQuater::operator*=(const float & s) { w *= s; x *= s; y *= s; z *= s; return *this; } GQuater & GQuater::operator/=(const float & s) { w /= s; x /= s; y /= s; z /= s; return *this; } GQuater GQuater::operator+() const { return *this; } GQuater GQuater::operator-() const { //return *this*-1.0f; return GQuater(); } GQuater GQuater::operator+(const GQuater & rhs) const { GQuater ret(*this); ret += rhs; return ret; } GQuater GQuater::operator-(const GQuater & rhs) const { GQuater ret(*this); ret -= rhs; return ret; } GQuater GQuater::operator*(const GQuater & rhs) const { GQuater ret(*this); ret *= rhs; return ret; } GQuater GQuater::operator*(const float & s) const { GQuater ret(*this); ret *= s; return ret; } GQuater GQuater::operator/(const float & s) const { GQuater ret(*this); ret /= s; return ret; } GQuater & GQuater::Set(const float w, const float x, const float y, const float z) { this->w = w; this->x = x; this->y = y; this->z = z; return *this; } GQuater & GQuater::Set(float * q, bool invOrder) { if (invOrder) { w = q[1]; x = q[2]; y = q[3]; z = q[0]; } else { w = q[0]; x = q[1]; y = q[2]; z = q[3]; } return *this; } bool GQuater::IsUnitQuater() const { float len = SQR(w) + SQR(x) + SQR(y) + SQR(z); return EQ(len, 1.0f, PRECISION) ? true : false; } bool GQuater::IsIdentity() const { return EQ(w,1.0f,PRECISION) && EQ(x, 0.0f, PRECISION) && EQ(y, 0.0f, PRECISION) && EQ(z, 0.0f, PRECISION); } GQuater & GQuater::Normalize() { float len = SQR(w) + SQR(x) + SQR(y) + SQR(z); w /= len; x /= len; y /= len; z /= len; return *this; } GQuater & GQuater::SetIdentitf() { w /= 1.0f; x /= 0.0f; y /= 0.0f; z /= 0.0f; return *this; } GQuater & GQuater::SetConjugate() { x *= -1.0f; y *= -1.0f; z *= -1.0f; return *this; } GQuater & GQuater::SetInverse() { if (!IsUnitQuater()) {//如果不是单位四元数要先单位化 float len = SQR(w) + SQR(x) + SQR(y) + SQR(z); *this /= len; } SetConjugate(); return *this; } GQuater operator*(const float & s, const GQuater & rhs) { GQuater ret(rhs); ret *= s; return ret; } ostream & operator<<(ostream & os, const GQuater & q) { os << "(" << setw(2) << q.w << ", " << setw(2) << q.x << ", " << setw(2) << q.y << ", " << setw(2) << q.z << ")"; return os; } float norm(const GQuater & q) { float norm = SQRT(SQR(q.w) + SQR(q.x) + SQR(q.y) + SQR(q.z)); return norm; } GQuater inv(const GQuater & q) { GQuater ret(q); if (!ret.IsUnitQuater()) {//如果不是单位四元数要先单位化 float t = SQR(ret.w) + SQR(ret.x) + SQR(ret.y) + SQR(ret.z); ret /= t; } ret.Set(ret.w, -ret.x, -ret.y, -ret.z); return ret; }