You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5930 lines
172 KiB
5930 lines
172 KiB
|
|
#pragma once
|
|
|
|
#include <cstdio>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <stdlib.h>
|
|
#include <vector>
|
|
#include <map>
|
|
#include <limits>
|
|
|
|
namespace CELL
|
|
{
|
|
|
|
#define PI 3.14159265358979323
|
|
#define TWO_PI 6.28318530717958647
|
|
#define HALF_PI 1.57079632679489661
|
|
#define DEG2RAD(theta) (0.01745329251994329 * theta)
|
|
#define RAD2DEG 57.2957795130823208
|
|
#define LOG2 0.69314718055994529
|
|
#define WGS_84_RADIUS_EQUATOR 6378137.0
|
|
#define WGS_84_RADIUS_POLAR 6356752.3142
|
|
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
|
#define MAX(a,b) ((a) > (b) ? (a) : (b))
|
|
#ifndef FLT_MAX
|
|
#define FLT_MAX 3.402823466e+38F
|
|
#endif
|
|
|
|
#ifndef FLT_MIN
|
|
#define FLT_MIN 1.175494351e-38F
|
|
#endif
|
|
|
|
#define MAKE_INT(a, b) ((int)(((short)(((int)(a)) & 0xffff)) | ((int)((short)(((int)(b)) & 0xffff))) << 16))
|
|
|
|
typedef unsigned char byte;
|
|
typedef long long int64;
|
|
typedef unsigned short ushort;
|
|
typedef unsigned int uint;
|
|
typedef unsigned long ulong;
|
|
|
|
template<class T> inline T tmin(T a,T b)
|
|
{
|
|
return a < b ? a:b;
|
|
}
|
|
|
|
template<class T> inline T tmax(T a,T b)
|
|
{
|
|
return a > b ? a:b;
|
|
}
|
|
|
|
|
|
union LargeInt
|
|
{
|
|
struct __LARGE_INT
|
|
{
|
|
unsigned int LowPart;
|
|
unsigned int HighPart;
|
|
}_largeInt;
|
|
int64 int64Data;
|
|
} ;
|
|
|
|
|
|
inline float unitRandom ()
|
|
{
|
|
return float(rand()) / float( RAND_MAX );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------
|
|
inline float rangeRandom (float fLow, float fHigh)
|
|
{
|
|
return (fHigh-fLow)*unitRandom() + fLow;
|
|
}
|
|
|
|
/**
|
|
* 产生64位数字
|
|
*/
|
|
inline int64 makeInt64(unsigned low,unsigned hi)
|
|
{
|
|
LargeInt intdata;
|
|
intdata._largeInt.HighPart = low;
|
|
intdata._largeInt.LowPart = hi;
|
|
return intdata.int64Data;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
struct tvec2
|
|
{
|
|
typedef T value_type;
|
|
typedef std::size_t size_type;
|
|
typedef tvec2<T> type;
|
|
|
|
value_type x;
|
|
value_type y;
|
|
|
|
|
|
value_type & operator[](size_type i)
|
|
{
|
|
assert(i < this->length());
|
|
return (&x)[i];
|
|
}
|
|
|
|
value_type const & operator[]( size_type i ) const
|
|
{
|
|
assert(i < this->length());
|
|
return (&x)[i];
|
|
}
|
|
tvec2() :
|
|
x(value_type(0)),
|
|
y(value_type(0))
|
|
{}
|
|
tvec2(tvec2<T> const & v) :
|
|
x(v.x),
|
|
y(v.y)
|
|
{}
|
|
tvec2(value_type const & s) :
|
|
x(s),
|
|
y(s)
|
|
{}
|
|
|
|
tvec2(value_type const & s1, value_type const & s2) :
|
|
x(s1),
|
|
y(s2)
|
|
{}
|
|
|
|
template <typename U>
|
|
tvec2(U const & x) :
|
|
x(value_type(x)),
|
|
y(value_type(x))
|
|
{}
|
|
|
|
template <typename U, typename V>
|
|
tvec2(U const & a, V b) :
|
|
x(value_type(a)),
|
|
y(value_type(b))
|
|
{}
|
|
|
|
|
|
template <typename U>
|
|
tvec2(tvec2<U> const & v) :
|
|
x(value_type(v.x)),
|
|
y(value_type(v.y))
|
|
{}
|
|
|
|
tvec2<T> & operator= (tvec2<T> const & v)
|
|
{
|
|
this->x = v.x;
|
|
this->y = v.y;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec2<T> & operator= (tvec2<U> const & v)
|
|
{
|
|
this->x = T(v.x);
|
|
this->y = T(v.y);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec2<T> & operator+=(U const & s)
|
|
{
|
|
this->x += T(s);
|
|
this->y += T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec2<T> & operator+=(tvec2<U> const & v)
|
|
{
|
|
this->x += T(v.x);
|
|
this->y += T(v.y);
|
|
return *this;
|
|
}
|
|
|
|
|
|
template <typename U>
|
|
tvec2<T> & operator-=(U const & s)
|
|
{
|
|
this->x -= T(s);
|
|
this->y -= T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec2<T> & operator-=(tvec2<U> const & v)
|
|
{
|
|
this->x -= T(v.x);
|
|
this->y -= T(v.y);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec2<T> & operator*=(U s)
|
|
{
|
|
this->x *= T(s);
|
|
this->y *= T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec2<T> & operator*=(tvec2<U> const & v)
|
|
{
|
|
this->x *= T(v.x);
|
|
this->y *= T(v.y);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec2<T> & operator/=(U s)
|
|
{
|
|
this->x /= T(s);
|
|
this->y /= T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec2<T> & operator/=(tvec2<U> const & v)
|
|
{
|
|
this->x /= T(v.x);
|
|
this->y /= T(v.y);
|
|
return *this;
|
|
}
|
|
|
|
tvec2<T> & operator++()
|
|
{
|
|
++ this->x;
|
|
++ this->y;
|
|
return *this;
|
|
}
|
|
tvec2<T> & operator--()
|
|
{
|
|
--this->x;
|
|
--this->y;
|
|
return *this;
|
|
}
|
|
void makeCeil( tvec2<T> cmp )
|
|
{
|
|
if( cmp.x > x ) x = cmp.x;
|
|
if( cmp.y > y ) y = cmp.y;
|
|
}
|
|
void makeFloor( tvec2<T> cmp )
|
|
{
|
|
if( cmp.x < x ) x = cmp.x;
|
|
if( cmp.y < y ) y = cmp.y;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
tvec2<T> rotate(tvec2<T> const & v, T angle)
|
|
{
|
|
tvec2<T> res;
|
|
T const c(cos(DEG2RAD(angle)));
|
|
T const s(sin(DEG2RAD(angle)));
|
|
res.x = v.x * c - v.y * s;
|
|
res.y = v.x * s + v.y * c;
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator==(tvec2<T> const & v1, tvec2<T> const & v2)
|
|
{
|
|
return (v1.x == v2.x) && (v1.y == v2.y);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(tvec2<T> const & v1, tvec2<T> const & v2)
|
|
{
|
|
return (v1.x != v2.x) || (v1.y != v2.y);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator+ (tvec2<T> const & v, T const & s)
|
|
{
|
|
return tvec2<T>(
|
|
v.x + T(s),
|
|
v.y + T(s));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator+ (T const & s, tvec2<T> const & v)
|
|
{
|
|
return tvec2<T>(
|
|
T(s) + v.x,
|
|
T(s) + v.y);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator+ (tvec2<T> const & v1, tvec2<T> const & v2)
|
|
{
|
|
return tvec2<T>(
|
|
v1.x + T(v2.x),
|
|
v1.y + T(v2.y));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator-(tvec2<T> const & v, T const & s)
|
|
{
|
|
return tvec2<T>(
|
|
v.x - T(s),
|
|
v.y - T(s));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator- (T const & s, tvec2<T> const & v)
|
|
{
|
|
return tvec2<T>(
|
|
T(s) - v.x,
|
|
T(s) - v.y);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator- (tvec2<T> const & v1, tvec2<T> const & v2)
|
|
{
|
|
return tvec2<T>(
|
|
v1.x - T(v2.x),
|
|
v1.y - T(v2.y));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator* (tvec2<T> const & v, T const & s)
|
|
{
|
|
return tvec2<T>(
|
|
v.x * T(s),
|
|
v.y * T(s));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator* (T const & s, tvec2<T> const & v)
|
|
{
|
|
return tvec2<T>(
|
|
T(s) * v.x,
|
|
T(s) * v.y);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator*(tvec2<T> const & v1, tvec2<T> const & v2)
|
|
{
|
|
return tvec2<T>(
|
|
v1.x * T(v2.x),
|
|
v1.y * T(v2.y));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator/(tvec2<T> const & v, T const & s)
|
|
{
|
|
return tvec2<T>(
|
|
v.x / T(s),
|
|
v.y / T(s));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator/(T const & s, tvec2<T> const & v)
|
|
{
|
|
return tvec2<T>(
|
|
T(s) / v.x,
|
|
T(s) / v.y);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator/ (tvec2<T> const & v1, tvec2<T> const & v2 )
|
|
{
|
|
return tvec2<T>(
|
|
v1.x / T(v2.x),
|
|
v1.y / T(v2.y)
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator- (tvec2<T> const & v)
|
|
{
|
|
return tvec2<T> (
|
|
-v.x,
|
|
-v.y
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator++ (tvec2<T> const & v, int)
|
|
{
|
|
return tvec2<T>(
|
|
v.x + T(1),
|
|
v.y + T(1)
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator-- (tvec2<T> const & v, int)
|
|
{
|
|
return tvec2<T>(
|
|
v.x - T(1),
|
|
v.y - T(1)
|
|
);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
struct tvec3
|
|
{
|
|
typedef T value_type;
|
|
typedef std::size_t size_type;
|
|
typedef tvec3<T> type;
|
|
|
|
value_type x;
|
|
value_type y;
|
|
value_type z;
|
|
|
|
size_type length() const
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
value_type & operator[](size_type i)
|
|
{
|
|
assert(i < this->length());
|
|
return (&x)[i];
|
|
}
|
|
|
|
value_type const & operator[](size_type i) const
|
|
{
|
|
assert(i < this->length());
|
|
return (&x)[i];
|
|
}
|
|
|
|
inline tvec3() :
|
|
x(value_type(0)),
|
|
y(value_type(0)),
|
|
z(value_type(0))
|
|
{}
|
|
|
|
inline tvec3(tvec3<T> const & v) :
|
|
x(v.x),
|
|
y(v.y),
|
|
z(v.z)
|
|
{}
|
|
|
|
inline tvec3(value_type s) :
|
|
x(s),
|
|
y(s),
|
|
z(s)
|
|
{}
|
|
|
|
inline tvec3(value_type s0, value_type s1, value_type s2) :
|
|
x(s0),
|
|
y(s1),
|
|
z(s2)
|
|
{}
|
|
|
|
|
|
template <typename U>
|
|
tvec3(U s) :
|
|
x(value_type(s)),
|
|
y(value_type(s)),
|
|
z(value_type(s))
|
|
{}
|
|
|
|
template <typename A, typename B, typename C>
|
|
tvec3(A x, B y, C z) :
|
|
x(value_type(x)),
|
|
y(value_type(y)),
|
|
z(value_type(z))
|
|
{}
|
|
|
|
template <typename A, typename B>
|
|
tvec3(tvec2<A> const& v, B s) :
|
|
x(value_type(v.x)),
|
|
y(value_type(v.y)),
|
|
z(value_type(s))
|
|
{}
|
|
template <typename A, typename B>
|
|
tvec3(A s,tvec2<B> const& v) :
|
|
x(value_type(s)),
|
|
y(value_type(v.x)),
|
|
z(value_type(v.y))
|
|
{}
|
|
|
|
template <typename U>
|
|
tvec3(tvec3<U> const & v) :
|
|
x(value_type(v.x)),
|
|
y(value_type(v.y)),
|
|
z(value_type(v.z))
|
|
{}
|
|
|
|
|
|
tvec3<T>& operator= (tvec3<T> const & v)
|
|
{
|
|
this->x = v.x;
|
|
this->y = v.y;
|
|
this->z = v.z;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec3<T>& operator= (tvec3<U> const & v)
|
|
{
|
|
this->x = T(v.x);
|
|
this->y = T(v.y);
|
|
this->z = T(v.z);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec3<T> & operator+=(U const & s)
|
|
{
|
|
this->x += T(s);
|
|
this->y += T(s);
|
|
this->z += T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec3<T> & operator+=(tvec3<U> const & v)
|
|
{
|
|
this->x += T(v.x);
|
|
this->y += T(v.y);
|
|
this->z += T(v.z);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec3<T> & operator-=(U const & s)
|
|
{
|
|
this->x -= T(s);
|
|
this->y -= T(s);
|
|
this->z -= T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec3<T> & operator-=(tvec3<U> const & v)
|
|
{
|
|
this->x -= T(v.x);
|
|
this->y -= T(v.y);
|
|
this->z -= T(v.z);
|
|
return *this;
|
|
}
|
|
template <typename U>
|
|
tvec3<T> & operator*=(U const & s)
|
|
{
|
|
this->x *= T(s);
|
|
this->y *= T(s);
|
|
this->z *= T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec3<T> & operator*=(tvec3<U> const & v)
|
|
{
|
|
this->x *= T(v.x);
|
|
this->y *= T(v.y);
|
|
this->z *= T(v.z);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec3<T> & operator/=(U const & s)
|
|
{
|
|
this->x /= T(s);
|
|
this->y /= T(s);
|
|
this->z /= T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec3<T> & operator/=(tvec3<U> const & v)
|
|
{
|
|
this->x /= T(v.x);
|
|
this->y /= T(v.y);
|
|
this->z /= T(v.z);
|
|
return *this;
|
|
}
|
|
|
|
tvec3<T> & operator++()
|
|
{
|
|
++this->x;
|
|
++this->y;
|
|
++this->z;
|
|
return *this;
|
|
}
|
|
tvec3<T> & operator--()
|
|
{
|
|
--this->x;
|
|
--this->y;
|
|
--this->z;
|
|
return *this;
|
|
}
|
|
|
|
void makeFloor( const tvec3<T>& cmp )
|
|
{
|
|
if( cmp.x < x ) x = cmp.x;
|
|
if( cmp.y < y ) y = cmp.y;
|
|
if( cmp.z < z ) z = cmp.z;
|
|
}
|
|
void makeCeil( const tvec3<T>& cmp )
|
|
{
|
|
if( cmp.x > x ) x = cmp.x;
|
|
if( cmp.y > y ) y = cmp.y;
|
|
if( cmp.z > z ) z = cmp.z;
|
|
}
|
|
T lengthf() const
|
|
{
|
|
return (T)sqrtf( x * x + y * y + z * z );
|
|
}
|
|
|
|
};
|
|
|
|
template<typename T>
|
|
bool operator >(const tvec3<T>& left ,const tvec3<T>& right)
|
|
{
|
|
return left.x > right.x && left.y > right.y && left.z > right.z;
|
|
}
|
|
|
|
template<typename T>
|
|
bool operator <(const tvec3<T>& left ,const tvec3<T>& right)
|
|
{
|
|
return left.x < right.x && left.y < right.y && left.z < right.z;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> rotateX(const tvec3<T>& v, T angle)
|
|
{
|
|
tvec3<T> res(v);
|
|
T c = cos(T(DEG2RAD(angle)));
|
|
T s = sin(T(DEG2RAD(angle)));
|
|
|
|
res.y = v.y * c - v.z * s;
|
|
res.z = v.y * s + v.z * c;
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> rotateY(tvec3<T> const & v, T angle)
|
|
{
|
|
tvec3<T> res = v;
|
|
|
|
T c = cos(T(DEG2RAD(angle)));
|
|
T s = sin(T(DEG2RAD(angle)));
|
|
|
|
res.x = v.x * c + v.z * s;
|
|
res.z = -v.x * s + v.z * c;
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> rotateZ(tvec3<T> const & v, T angle)
|
|
{
|
|
|
|
tvec3<T> res = v;
|
|
|
|
T c = cos(DEG2RAD(angle));
|
|
|
|
T s = sin(DEG2RAD(angle));
|
|
|
|
res.x = v.x * c - v.y * s;
|
|
res.y = v.x * s + v.y * c;
|
|
return res;
|
|
}
|
|
/**
|
|
* 两个向量的夹角
|
|
* 定义两个向量 A,B
|
|
* A·B = |A|*|B|*cos(@)
|
|
* cos(@) = A·B/|A|*|B|
|
|
* @ = acos(@)
|
|
*/
|
|
template <typename T>
|
|
T angleBetweenVector(const tvec3<T>& a, const tvec3<T>& b)
|
|
{
|
|
#define Mag(V) (sqrtf(V.x*V.x + V.y*V.y + V.z*V.z))
|
|
T dotProduct = dot(a, b);
|
|
T vectorsMagnitude = Mag(a) * Mag(b) ;
|
|
T angle = acos( dotProduct / vectorsMagnitude );
|
|
T result = angle * T(RAD2DEG);
|
|
if(_isnan(result))
|
|
{
|
|
return T(0);
|
|
}
|
|
else
|
|
{
|
|
return result;
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool _isnan(T t)
|
|
{
|
|
return t == t;
|
|
}
|
|
|
|
template <typename T>
|
|
T angleBetweenVector(const tvec2<T>& a, const tvec2<T>& b)
|
|
{
|
|
#define Mag2D(V) (sqrtf(V.x*V.x + V.y*V.y))
|
|
|
|
T dotProduct = dot(a, b);
|
|
T vectorsMagnitude = Mag2D(a) * Mag2D(b) ;
|
|
T angle = acos( dotProduct / vectorsMagnitude );
|
|
T result = angle * T(RAD2DEG);
|
|
if(_isnan(result))
|
|
{
|
|
return T(0);
|
|
}
|
|
else
|
|
{
|
|
return result;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static T clamp(T val, T minval, T maxval)
|
|
{
|
|
assert (minval < maxval && "Invalid clamp range");
|
|
return MAX(MIN(val, maxval), minval);
|
|
}
|
|
|
|
template <typename T>
|
|
inline T acosEx (T val)
|
|
{
|
|
if ( T(-1.0f) < val )
|
|
{
|
|
if ( val < 1.0f )
|
|
return T(acos(val));
|
|
else
|
|
return T(0);
|
|
}
|
|
else
|
|
{
|
|
return T(PI);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
inline T angleBetween(const tvec3<T>& a, const tvec3<T>& b)
|
|
{
|
|
T lenProduct = a.lengthf() * b.lengthf();
|
|
|
|
// Divide by zero check
|
|
if(lenProduct < 1e-6f)
|
|
lenProduct = 1e-6f;
|
|
|
|
float f = dot(a,b) / lenProduct;
|
|
|
|
f = clamp(f, T(-1.0), T(1.0));
|
|
return acosEx(f);
|
|
|
|
}
|
|
|
|
/**
|
|
* 点在多边形里
|
|
* 如果点在多边形中,则,点与边的夹角之和 == 360
|
|
*/
|
|
template<typename T>
|
|
bool insidePolyon( const tvec3<T>& point, const tvec3<T> polygon[], size_t count)
|
|
{
|
|
tvec3<T> vA, vB;
|
|
T angle = T(0.0);
|
|
for (size_t i = 0; i < count; ++i)
|
|
{
|
|
vA = polygon[i] - point;
|
|
vB = polygon[(i + 1) % count] - point;
|
|
angle += angleBetweenVector(vA, vB);
|
|
}
|
|
if( abs(angle - 360 ) >= 0.5f)
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename T>
|
|
bool insidePolyon( const tvec2<T>& point, const tvec2<T> polygon[], size_t count)
|
|
{
|
|
T angle = T(0.0);
|
|
tvec2<T> vA, vB;
|
|
for (size_t i = 0; i < count; ++i)
|
|
{
|
|
vA = polygon[i] - point;
|
|
vB = polygon[(i + 1) % count] - point;
|
|
tvec3<T> a(vA.x,vA.y,0);
|
|
tvec3<T> b(vB.x,vB.y,0);
|
|
angle += angleBetweenVector<T>(a, b);
|
|
}
|
|
if( abs(angle - 360 ) >= 0.5f)
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename T>
|
|
bool pointinTriangle(tvec3<T> A, tvec3<T> B, tvec3<T> C, tvec3<T> P)
|
|
{
|
|
tvec3<T> v0 = C - A ;
|
|
tvec3<T> v1 = B - A ;
|
|
tvec3<T> v2 = P - A ;
|
|
|
|
float dot00 = dot(v0,v0) ;
|
|
float dot01 = dot(v0,v1) ;
|
|
float dot02 = dot(v0,v2) ;
|
|
float dot11 = dot(v1,v1) ;
|
|
float dot12 = dot(v1,v2) ;
|
|
|
|
float inverDeno = 1 / (dot00 * dot11 - dot01 * dot01) ;
|
|
|
|
float u = (dot11 * dot02 - dot01 * dot12) * inverDeno ;
|
|
if (u < 0 || u > 1) // if u out of range, return directly
|
|
{
|
|
return false ;
|
|
}
|
|
|
|
float v = (dot00 * dot12 - dot01 * dot02) * inverDeno ;
|
|
if (v < 0 || v > 1) // if v out of range, return directly
|
|
{
|
|
return false ;
|
|
}
|
|
|
|
return u + v <= 1 ;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
bool pointinTriangle(tvec2<T> A, tvec2<T> B, tvec2<T> C, tvec2<T> P)
|
|
{
|
|
return pointinTriangle(
|
|
tvec3<T>(A.x,A.y,0),
|
|
tvec3<T>(B.x,B.y,0),
|
|
tvec3<T>(C.x,C.y,0),
|
|
tvec3<T>(P.x,P.y,0));
|
|
}
|
|
|
|
|
|
/**
|
|
* 射线与三角形相交
|
|
*/
|
|
template<typename T>
|
|
bool intersectTriangle(
|
|
const tvec3<T>& orig,
|
|
const tvec3<T>& dir,
|
|
tvec3<T>& v0,
|
|
tvec3<T>& v1,
|
|
tvec3<T>& v2,
|
|
T* t,
|
|
T* u,
|
|
T* v
|
|
)
|
|
{
|
|
// Find vectors for two edges sharing vert0
|
|
tvec3<T> edge1 = v1 - v0;
|
|
tvec3<T> edge2 = v2 - v0;
|
|
|
|
// Begin calculating determinant - also used to calculate U parameter
|
|
tvec3<T> pvec;
|
|
pvec = cross(dir, edge2 );
|
|
|
|
// If determinant is near zero, ray lies in plane of triangle
|
|
T det = dot( edge1,pvec );
|
|
|
|
tvec3<T> tvec;
|
|
if( det > 0 )
|
|
{
|
|
tvec = orig - v0;
|
|
}
|
|
else
|
|
{
|
|
tvec = v0 - orig;
|
|
det = -det;
|
|
}
|
|
if( det < 0.0001f )
|
|
return false;
|
|
// Calculate U parameter and test bounds
|
|
*u = dot( tvec, pvec );
|
|
if( *u < 0.0f || *u > det )
|
|
return false;
|
|
|
|
// Prepare to test V parameter
|
|
tvec3<T> qvec;
|
|
qvec = cross(tvec, edge1 );
|
|
|
|
// Calculate V parameter and test bounds
|
|
*v = dot( dir, qvec );
|
|
if( *v < T(0.0f) || *u + *v > det )
|
|
return false;
|
|
|
|
*t = dot( edge2,qvec );
|
|
T fInvDet = T(1.0) / det;
|
|
*t *= fInvDet;
|
|
*u *= fInvDet;
|
|
*v *= fInvDet;
|
|
|
|
return true;
|
|
}
|
|
/**
|
|
* 计算三角形面积
|
|
*/
|
|
template<typename T> T calcTriangleArea(const tvec3<T>& pt1,const tvec3<T>& pt2,const tvec3<T>& pt3)
|
|
{
|
|
tvec3<T> e1 = pt2 - pt1;
|
|
tvec3<T> e2 = pt3 - pt1;
|
|
tvec3<T> e3 = cross(e1,e2);
|
|
return length(e3) * T(0.5);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool operator==(tvec3<T> const & v1, tvec3<T> const & v2)
|
|
{
|
|
return (v1.x == v2.x) && (v1.y == v2.y) && (v1.z == v2.z);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(tvec3<T> const & v1, tvec3<T> const & v2)
|
|
{
|
|
return (v1.x != v2.x) || (v1.y != v2.y) || (v1.z != v2.z);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
tvec3<T> operator+(tvec3<T> const & v, T const & s)
|
|
{
|
|
return tvec3<T>(
|
|
v.x + T(s),
|
|
v.y + T(s),
|
|
v.z + T(s));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator+ ( T const & s, tvec3<T> const & v)
|
|
{
|
|
return tvec3<T>(
|
|
T(s) + v.x,
|
|
T(s) + v.y,
|
|
T(s) + v.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator+ (tvec3<T> const & v1, tvec3<T> const & v2)
|
|
{
|
|
return tvec3<T>(
|
|
v1.x + T(v2.x),
|
|
v1.y + T(v2.y),
|
|
v1.z + T(v2.z));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator- (tvec3<T> const & v, T const & s)
|
|
{
|
|
return tvec3<T>(
|
|
v.x - T(s),
|
|
v.y - T(s),
|
|
v.z - T(s));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator- (T const & s, tvec3<T> const & v)
|
|
{
|
|
return tvec3<T>(
|
|
T(s) - v.x,
|
|
T(s) - v.y,
|
|
T(s) - v.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator- (tvec3<T> const & v1, tvec3<T> const & v2)
|
|
{
|
|
return tvec3<T>(
|
|
v1.x - T(v2.x),
|
|
v1.y - T(v2.y),
|
|
v1.z - T(v2.z));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator*(tvec3<T> const & v, T const & s)
|
|
{
|
|
return tvec3<T>(
|
|
v.x * T(s),
|
|
v.y * T(s),
|
|
v.z * T(s));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator* (T const & s, tvec3<T> const & v)
|
|
{
|
|
return tvec3<T>(
|
|
T(s) * v.x,
|
|
T(s) * v.y,
|
|
T(s) * v.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator* (tvec3<T> const & v1, tvec3<T> const & v2)
|
|
{
|
|
return tvec3<T>(
|
|
v1.x * T(v2.x),
|
|
v1.y * T(v2.y),
|
|
v1.z * T(v2.z));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator/ (tvec3<T> const & v, T const & s)
|
|
{
|
|
return tvec3<T>(
|
|
v.x / T(s),
|
|
v.y / T(s),
|
|
v.z / T(s));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator/ (T const & s, tvec3<T> const & v)
|
|
{
|
|
return tvec3<T>(
|
|
T(s) / v.x,
|
|
T(s) / v.y,
|
|
T(s) / v.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator/ (tvec3<T> const & v1, tvec3<T> const & v2)
|
|
{
|
|
return tvec3<T>(
|
|
v1.x / T(v2.x),
|
|
v1.y / T(v2.y),
|
|
v1.z / T(v2.z));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator- (tvec3<T> const & v)
|
|
{
|
|
return tvec3<T>(
|
|
-v.x,
|
|
-v.y,
|
|
-v.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator++ (tvec3<T> const & v, int)
|
|
{
|
|
return tvec3<T>(
|
|
v.x + T(1),
|
|
v.y + T(1),
|
|
v.z + T(1));
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator-- (tvec3<T> const & v, int)
|
|
{
|
|
return tvec3<T>(
|
|
v.x - T(1),
|
|
v.y - T(1),
|
|
v.z - T(1));
|
|
}
|
|
template <typename T>
|
|
struct tvec4
|
|
{
|
|
typedef T value_type;
|
|
typedef std::size_t size_type;
|
|
typedef tvec4<T> type;
|
|
|
|
|
|
|
|
value_type x, y, z, w;
|
|
|
|
size_type length() const
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
value_type & operator[](size_type i)
|
|
{
|
|
assert(i < this->length());
|
|
return (&x)[i];
|
|
}
|
|
|
|
value_type const & operator[](size_type i) const
|
|
{
|
|
assert(i < this->length());
|
|
return (&x)[i];
|
|
}
|
|
|
|
tvec4() :
|
|
x(value_type(0)),
|
|
y(value_type(0)),
|
|
z(value_type(0)),
|
|
w(value_type(0))
|
|
{}
|
|
tvec4(tvec3<T> const& v, T s) :
|
|
x(v.x),
|
|
y(v.y),
|
|
z(v.z),
|
|
w(s)
|
|
{}
|
|
tvec4(T s) :
|
|
x(s),
|
|
y(s),
|
|
z(s),
|
|
w(s)
|
|
{}
|
|
tvec4(tvec4<T> const & v) :
|
|
x(v.x),
|
|
y(v.y),
|
|
z(v.z),
|
|
w(v.w)
|
|
{}
|
|
|
|
template <typename A, typename B>
|
|
tvec4(tvec3<A> const & v, B s):
|
|
x(value_type(v.x)),
|
|
y(value_type(v.y)),
|
|
z(value_type(v.z)),
|
|
w(value_type(s))
|
|
{}
|
|
|
|
template <typename A, typename B>
|
|
tvec4(A s,tvec3<B> const & v):
|
|
x(value_type(s)),
|
|
y(value_type(v.x)),
|
|
z(value_type(v.y)),
|
|
w(value_type(v.z))
|
|
{}
|
|
|
|
template<typename U>
|
|
tvec4(tvec4<U> const & v) :
|
|
x(value_type(v.x)),
|
|
y(value_type(v.y)),
|
|
z(value_type(v.z)),
|
|
w(value_type(v.w))
|
|
{}
|
|
|
|
tvec4
|
|
(
|
|
value_type s1,
|
|
value_type s2,
|
|
value_type s3,
|
|
value_type s4
|
|
) :
|
|
x(s1),
|
|
y(s2),
|
|
z(s3),
|
|
w(s4)
|
|
{}
|
|
|
|
tvec4<T> & operator=(tvec4<T> const & v)
|
|
{
|
|
this->x = v.x;
|
|
this->y = v.y;
|
|
this->z = v.z;
|
|
this->w = v.w;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec4<T> & operator= (tvec4<U> const & v)
|
|
{
|
|
this->x = T(v.x);
|
|
this->y = T(v.y);
|
|
this->z = T(v.z);
|
|
this->w = T(v.w);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec4<T> & operator+=(U const & s)
|
|
{
|
|
this->x += T(s);
|
|
this->y += T(s);
|
|
this->z += T(s);
|
|
this->w += T(s);
|
|
return *this;
|
|
}
|
|
template <typename U>
|
|
tvec4<T> & operator+=(tvec4<U> const & v)
|
|
{
|
|
this->x += T(v.x);
|
|
this->y += T(v.y);
|
|
this->z += T(v.z);
|
|
this->w += T(v.w);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec4<T> & operator-=(U const & s)
|
|
{
|
|
this->x -= T(s);
|
|
this->y -= T(s);
|
|
this->z -= T(s);
|
|
this->w -= T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec4<T> & operator-=(tvec4<U> const & v)
|
|
{
|
|
this->x -= T(v.x);
|
|
this->y -= T(v.y);
|
|
this->z -= T(v.z);
|
|
this->w -= T(v.w);
|
|
return *this;
|
|
}
|
|
template <typename U>
|
|
tvec4<T> & operator*= (U const & s)
|
|
{
|
|
this->x *= T(s);
|
|
this->y *= T(s);
|
|
this->z *= T(s);
|
|
this->w *= T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec4<T> & operator*=( tvec4<U> const & v)
|
|
{
|
|
this->x *= T(v.x);
|
|
this->y *= T(v.y);
|
|
this->z *= T(v.z);
|
|
this->w *= T(v.w);
|
|
return *this;
|
|
}
|
|
template <typename U>
|
|
tvec4<T> & operator/=(U const & s)
|
|
{
|
|
this->x /= T(s);
|
|
this->y /= T(s);
|
|
this->z /= T(s);
|
|
this->w /= T(s);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tvec4<T> & operator/=(tvec4<U> const & v)
|
|
{
|
|
this->x /= T(v.x);
|
|
this->y /= T(v.y);
|
|
this->z /= T(v.z);
|
|
this->w /= T(v.w);
|
|
return *this;
|
|
}
|
|
|
|
tvec4<T> & operator++()
|
|
{
|
|
++this->x;
|
|
++this->y;
|
|
++this->z;
|
|
++this->w;
|
|
return *this;
|
|
}
|
|
|
|
tvec4<T> & operator--()
|
|
{
|
|
--this->x;
|
|
--this->y;
|
|
--this->z;
|
|
--this->w;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
tvec4<T> rotateX(const tvec4<T>& v, T angle)
|
|
{
|
|
tvec4<T> res(v);
|
|
T c = cos(DEG2RAD(angle));
|
|
T s = sin(DEG2RAD(angle));
|
|
|
|
res.y = v.y * c - v.z * s;
|
|
res.z = v.y * s + v.z * c;
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> rotateY(tvec4<T> const & v, T angle)
|
|
{
|
|
tvec4<T> res = v;
|
|
|
|
T c = cos(DEG2RAD(angle));
|
|
T s = sin(DEG2RAD(angle));
|
|
|
|
res.x = v.x * c + v.z * s;
|
|
res.z = -v.x * s + v.z * c;
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> rotateZ(tvec4<T> const & v, T angle)
|
|
{
|
|
|
|
tvec4<T> res = v;
|
|
|
|
T c = cos(DEG2RAD(angle));
|
|
T s = sin(DEG2RAD(angle));
|
|
|
|
res.x = v.x * c - v.y * s;
|
|
res.y = v.x * s + v.y * c;
|
|
return res;
|
|
}
|
|
template <typename T>
|
|
tvec4<T> operator+ (tvec4<T> const & v, T const & s)
|
|
{
|
|
return tvec4<T>(
|
|
v.x + s,
|
|
v.y + s,
|
|
v.z + s,
|
|
v.w + s);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator+ (T const & s, tvec4<T> const & v)
|
|
{
|
|
return tvec4<T>(
|
|
s + v.x,
|
|
s + v.y,
|
|
s + v.z,
|
|
s + v.w);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator+ (tvec4<T> const & v1, tvec4<T> const & v2)
|
|
{
|
|
return tvec4<T>(
|
|
v1.x + v2.x,
|
|
v1.y + v2.y,
|
|
v1.z + v2.z,
|
|
v1.w + v2.w);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator- (tvec4<T> const & v, T const & s)
|
|
{
|
|
return tvec4<T>(
|
|
v.x - s,
|
|
v.y - s,
|
|
v.z - s,
|
|
v.w - s);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator- (T const & s, tvec4<T> const & v)
|
|
{
|
|
return tvec4<T>(
|
|
s - v.x,
|
|
s - v.y,
|
|
s - v.z,
|
|
s - v.w);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator-
|
|
(
|
|
tvec4<T> const & v1,
|
|
tvec4<T> const & v2
|
|
)
|
|
{
|
|
return tvec4<T>(
|
|
v1.x - v2.x,
|
|
v1.y - v2.y,
|
|
v1.z - v2.z,
|
|
v1.w - v2.w);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator* (tvec4<T> const & v, T const & s)
|
|
{
|
|
return tvec4<T>(
|
|
v.x * s,
|
|
v.y * s,
|
|
v.z * s,
|
|
v.w * s);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator* (T const & s, tvec4<T> const & v)
|
|
{
|
|
return tvec4<T>(
|
|
s * v.x,
|
|
s * v.y,
|
|
s * v.z,
|
|
s * v.w);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator*(tvec4<T> const & v1, tvec4<T> const & v2)
|
|
{
|
|
return tvec4<T>(
|
|
v1.x * v2.x,
|
|
v1.y * v2.y,
|
|
v1.z * v2.z,
|
|
v1.w * v2.w);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator/ (tvec4<T> const & v, T const & s)
|
|
{
|
|
return tvec4<T>(
|
|
v.x / s,
|
|
v.y / s,
|
|
v.z / s,
|
|
v.w / s);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator/ (T const & s, tvec4<T> const & v)
|
|
{
|
|
return tvec4<T>(
|
|
s / v.x,
|
|
s / v.y,
|
|
s / v.z,
|
|
s / v.w);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator/ ( tvec4<T> const & v1, tvec4<T> const & v2)
|
|
{
|
|
return tvec4<T>(
|
|
v1.x / v2.x,
|
|
v1.y / v2.y,
|
|
v1.z / v2.z,
|
|
v1.w / v2.w);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> operator- ( tvec4<T> const & v)
|
|
{
|
|
return tvec4<T>(
|
|
-v.x,
|
|
-v.y,
|
|
-v.z,
|
|
-v.w);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool operator==
|
|
(
|
|
tvec4<T> const & v1,
|
|
tvec4<T> const & v2
|
|
)
|
|
{
|
|
return (v1.x == v2.x) && (v1.y == v2.y) && (v1.z == v2.z) && (v1.w == v2.w);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(tvec4<T> const & v1, tvec4<T> const & v2)
|
|
{
|
|
return (v1.x != v2.x) || (v1.y != v2.y) || (v1.z != v2.z) || (v1.w != v2.w);
|
|
}
|
|
|
|
template<typename T>
|
|
class trect
|
|
{
|
|
public:
|
|
trect(T left = 0,T top = 0,T right = 0,T bottom = 0)
|
|
{
|
|
_left = left;
|
|
_top = top;
|
|
_right = right;
|
|
_bottom = bottom;
|
|
}
|
|
void fromCenter(T x,T y,T size)
|
|
{
|
|
_left = x - size * T(0.5f);
|
|
_top = y - size * T(0.5f);
|
|
_right = x + size * T(0.5f);
|
|
_bottom = y + size * T(0.5f);
|
|
}
|
|
|
|
void fromCenter(T x,T y,T sizeX,T sizeY)
|
|
{
|
|
_left = x - sizeX * T(0.5f);
|
|
_top = y - sizeY * T(0.5f);
|
|
_right = x + sizeX * T(0.5f);
|
|
_bottom = y + sizeY * T(0.5f);
|
|
}
|
|
|
|
bool ptInRect(T x,T y)
|
|
{
|
|
return x >= _left && x <= _right && y >= _top && y <= _bottom;
|
|
}
|
|
|
|
tvec2<T>center() const
|
|
{
|
|
return tvec2<T>((_left + _right) * T(0.5f),(_bottom + _top) * T(0.5f));
|
|
}
|
|
|
|
tvec2<T>halSize() const
|
|
{
|
|
return tvec2<T>((_right - _left) * T(0.5f),(_bottom - _top) * T(0.5f));
|
|
}
|
|
public:
|
|
T _left;
|
|
T _top;
|
|
T _right;
|
|
T _bottom;
|
|
};
|
|
|
|
template <typename T>
|
|
struct tmat2x2
|
|
{
|
|
typedef T value_type;
|
|
typedef std::size_t size_type;
|
|
typedef tvec2<T> col_type;
|
|
typedef tvec2<T> row_type;
|
|
typedef tmat2x2<T> type;
|
|
typedef tmat2x2<T> transpose_type;
|
|
|
|
|
|
public:
|
|
tmat2x2<T> _inverse() const
|
|
{
|
|
value_type Determinant = this->value[0][0] * this->value[1][1] - this->value[1][0] * this->value[0][1];
|
|
|
|
tmat2x2<T> Inverse(
|
|
+ this->value[1][1] / Determinant,
|
|
- this->value[0][1] / Determinant,
|
|
- this->value[1][0] / Determinant,
|
|
+ this->value[0][0] / Determinant);
|
|
return Inverse;
|
|
}
|
|
|
|
private:
|
|
col_type value[2];
|
|
|
|
public:
|
|
|
|
size_type length() const
|
|
{
|
|
return 2;
|
|
}
|
|
|
|
static size_type col_size()
|
|
{
|
|
return 2;
|
|
}
|
|
|
|
static size_type row_size()
|
|
{
|
|
return 2;
|
|
}
|
|
|
|
col_type &operator[](size_type i)
|
|
{
|
|
assert(i < this->length());
|
|
return this->value[i];
|
|
}
|
|
col_type const &operator[](size_type i) const
|
|
{
|
|
assert(i < this->length());
|
|
return this->value[i];
|
|
}
|
|
|
|
tmat2x2()
|
|
{
|
|
this->value[0] = col_type(1, 0);
|
|
this->value[1] = col_type(0, 1);
|
|
}
|
|
|
|
tmat2x2(tmat2x2<T> const & m)
|
|
{
|
|
this->value[0] = m.value[0];
|
|
this->value[1] = m.value[1];
|
|
}
|
|
tmat2x2(value_type s)
|
|
{
|
|
value_type const Zero(0);
|
|
this->value[0] = col_type(s, Zero);
|
|
this->value[1] = col_type(Zero, s);
|
|
}
|
|
|
|
tmat2x2(value_type x0, value_type y0, value_type x1, value_type y1)
|
|
{
|
|
this->value[0] = col_type(x0, y0);
|
|
this->value[1] = col_type(x1, y1);
|
|
}
|
|
|
|
tmat2x2(col_type const & v0, col_type const & v1)
|
|
{
|
|
this->value[0] = v0;
|
|
this->value[1] = v1;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2(U s)
|
|
{
|
|
value_type const Zero(0);
|
|
this->value[0] = tvec2<T>(value_type(s), Zero);
|
|
this->value[1] = tvec2<T>(Zero, value_type(s));
|
|
}
|
|
|
|
template <typename X1, typename Y1, typename X2, typename Y2>
|
|
tmat2x2(X1 x1, Y1 y1, X2 x2, Y2 y2)
|
|
{
|
|
this->value[0] = col_type(value_type(x1), value_type(y1));
|
|
this->value[1] = col_type(value_type(x2), value_type(y2));
|
|
}
|
|
template <typename V1, typename V2>
|
|
tmat2x2
|
|
(
|
|
tvec2<V1> const & v1,
|
|
tvec2<V2> const & v2
|
|
)
|
|
{
|
|
this->value[0] = col_type(v1);
|
|
this->value[1] = col_type(v2);
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2(tmat2x2<U> const & m)
|
|
{
|
|
this->value[0] = col_type(m[0]);
|
|
this->value[1] = col_type(m[1]);
|
|
}
|
|
tmat2x2<T>& operator=(tmat2x2<T> const & m)
|
|
{
|
|
this->value[0] = m[0];
|
|
this->value[1] = m[1];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2<T>& operator=
|
|
(
|
|
tmat2x2<U> const & m
|
|
)
|
|
{
|
|
this->value[0] = m[0];
|
|
this->value[1] = m[1];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2<T>& operator+=(U const & s)
|
|
{
|
|
this->value[0] += s;
|
|
this->value[1] += s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2<T>& operator+=
|
|
(
|
|
tmat2x2<U> const & m
|
|
)
|
|
{
|
|
this->value[0] += m[0];
|
|
this->value[1] += m[1];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2<T>& operator-=(U const & s)
|
|
{
|
|
this->value[0] -= s;
|
|
this->value[1] -= s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2<T>& operator-=(tmat2x2<U> const & m)
|
|
{
|
|
this->value[0] -= m[0];
|
|
this->value[1] -= m[1];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2<T>& operator*= ( U const & s)
|
|
{
|
|
this->value[0] *= s;
|
|
this->value[1] *= s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2<T>& operator*= (tmat2x2<U> const & m)
|
|
{
|
|
return (*this = *this * m);
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2<T>& operator/= (U const & s)
|
|
{
|
|
this->value[0] /= s;
|
|
this->value[1] /= s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat2x2<T>& operator/= (tmat2x2<U> const & m)
|
|
{
|
|
return (*this = *this / m);
|
|
}
|
|
|
|
tmat2x2<T>& operator++ ()
|
|
{
|
|
++this->value[0];
|
|
++this->value[1];
|
|
return *this;
|
|
}
|
|
|
|
tmat2x2<T>& operator-- ()
|
|
{
|
|
--this->value[0];
|
|
--this->value[1];
|
|
return *this;
|
|
};
|
|
};
|
|
|
|
template <typename T>
|
|
tmat2x2<T> rotate(T angle)
|
|
{
|
|
T c = cos(DEG2RAD(angle));
|
|
T s = sin(DEG2RAD(angle));
|
|
return tmat2x2<T>(c,s,-s,c);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat2x2<T> operator+ (tmat2x2<T> const & m, T const & s)
|
|
{
|
|
return tmat2x2<T>(m[0] + s,m[1] + s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat2x2<T> operator+ (T const & s, tmat2x2<T> const & m)
|
|
{
|
|
return tmat2x2<T>(m[0] + s,m[1] + s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat2x2<T> operator+ (tmat2x2<T> const & m1, tmat2x2<T> const & m2)
|
|
{
|
|
return tmat2x2<T>(m1[0] + m2[0],m1[1] + m2[1]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat2x2<T> operator- (tmat2x2<T> const & m, T const & s)
|
|
{
|
|
return tmat2x2<T>(m[0] - s,m[1] - s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat2x2<T> operator- (T const & s, tmat2x2<T> const & m)
|
|
{
|
|
return tmat2x2<T>(s - m[0],s - m[1]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat2x2<T> operator- (tmat2x2<T> const & m1, tmat2x2<T> const & m2)
|
|
{
|
|
return tmat2x2<T>(m1[0] - m2[0],m1[1] - m2[1]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat2x2<T> operator* (tmat2x2<T> const & m, T const & s)
|
|
{
|
|
return tmat2x2<T>(m[0] * s,m[1] * s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat2x2<T> operator* ( T const & s, tmat2x2<T> const & m)
|
|
{
|
|
return tmat2x2<T>(m[0] * s,m[1] * s);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator*(tmat2x2<T> const & m, tvec2<T> const & v)
|
|
{
|
|
return tvec2<T>(
|
|
m[0][0] * v.x + m[1][0] * v.y,
|
|
m[0][1] * v.x + m[1][1] * v.y);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> operator*(tvec2<T> const & v, tmat2x2<T> const & m)
|
|
{
|
|
return tvec2<T>(
|
|
v.x * m[0][0] + v.y * m[0][1],
|
|
v.x * m[1][0] + v.y * m[1][1]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat2x2<T> operator*(tmat2x2<T> const & m1,tmat2x2<T> const & m2)
|
|
{
|
|
return tmat2x2<T>(
|
|
m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1],
|
|
m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1],
|
|
m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1],
|
|
m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1]);
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
struct tmat3x3
|
|
{
|
|
typedef T value_type;
|
|
typedef std::size_t size_type;
|
|
typedef tvec3<T> col_type;
|
|
typedef tvec3<T> row_type;
|
|
typedef tmat3x3<T> type;
|
|
typedef tmat3x3<T> transpose_type;
|
|
|
|
|
|
private:
|
|
// Data
|
|
col_type value[3];
|
|
|
|
public:
|
|
size_type length() const
|
|
{
|
|
return 3;
|
|
}
|
|
size_type col_size()
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
size_type row_size()
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
tmat3x3()
|
|
{
|
|
value_type const Zero(0);
|
|
value_type const One(1);
|
|
this->value[0] = col_type(One, Zero, Zero);
|
|
this->value[1] = col_type(Zero, One, Zero);
|
|
this->value[2] = col_type(Zero, Zero, One);
|
|
}
|
|
|
|
tmat3x3
|
|
(
|
|
tmat3x3<T> const & m
|
|
)
|
|
{
|
|
this->value[0] = m.value[0];
|
|
this->value[1] = m.value[1];
|
|
this->value[2] = m.value[2];
|
|
}
|
|
|
|
|
|
tmat3x3(value_type const & s)
|
|
{
|
|
value_type const Zero(0);
|
|
this->value[0] = col_type(s, Zero, Zero);
|
|
this->value[1] = col_type(Zero, s, Zero);
|
|
this->value[2] = col_type(Zero, Zero, s);
|
|
}
|
|
|
|
|
|
tmat3x3
|
|
(
|
|
value_type const & x0, value_type const & y0, value_type const & z0,
|
|
value_type const & x1, value_type const & y1, value_type const & z1,
|
|
value_type const & x2, value_type const & y2, value_type const & z2
|
|
)
|
|
{
|
|
this->value[0] = col_type(x0, y0, z0);
|
|
this->value[1] = col_type(x1, y1, z1);
|
|
this->value[2] = col_type(x2, y2, z2);
|
|
}
|
|
|
|
tmat3x3
|
|
(
|
|
col_type const & v0,
|
|
col_type const & v1,
|
|
col_type const & v2
|
|
)
|
|
{
|
|
this->value[0] = v0;
|
|
this->value[1] = v1;
|
|
this->value[2] = v2;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat3x3(U const & s)
|
|
{
|
|
value_type const Zero(0);
|
|
this->value[0] = tvec3<T>(value_type(s), Zero, Zero);
|
|
this->value[1] = tvec3<T>(Zero, value_type(s), Zero);
|
|
this->value[2] = tvec3<T>(Zero, Zero, value_type(s));
|
|
}
|
|
|
|
template <
|
|
typename X1, typename Y1, typename Z1,
|
|
typename X2, typename Y2, typename Z2,
|
|
typename X3, typename Y3, typename Z3>
|
|
tmat3x3
|
|
(
|
|
X1 const & x1, Y1 const & y1, Z1 const & z1,
|
|
X2 const & x2, Y2 const & y2, Z2 const & z2,
|
|
X3 const & x3, Y3 const & y3, Z3 const & z3
|
|
)
|
|
{
|
|
this->value[0] = col_type(value_type(x1), value_type(y1), value_type(z1));
|
|
this->value[1] = col_type(value_type(x2), value_type(y2), value_type(z2));
|
|
this->value[2] = col_type(value_type(x3), value_type(y3), value_type(z3));
|
|
}
|
|
|
|
template <typename V1, typename V2, typename V3>
|
|
tmat3x3
|
|
(
|
|
tvec3<V1> const & v1,
|
|
tvec3<V2> const & v2,
|
|
tvec3<V3> const & v3
|
|
)
|
|
{
|
|
this->value[0] = col_type(v1);
|
|
this->value[1] = col_type(v2);
|
|
this->value[2] = col_type(v3);
|
|
}
|
|
|
|
template <typename U>
|
|
tmat3x3(tmat3x3<U> const & m)
|
|
{
|
|
this->value[0] = col_type(m[0]);
|
|
this->value[1] = col_type(m[1]);
|
|
this->value[2] = col_type(m[2]);
|
|
}
|
|
|
|
|
|
|
|
tmat3x3<T> _inverse() const
|
|
{
|
|
T S00 = value[0][0];
|
|
T S01 = value[0][1];
|
|
T S02 = value[0][2];
|
|
|
|
T S10 = value[1][0];
|
|
T S11 = value[1][1];
|
|
T S12 = value[1][2];
|
|
|
|
T S20 = value[2][0];
|
|
T S21 = value[2][1];
|
|
T S22 = value[2][2];
|
|
|
|
tmat3x3<T> Inverse(
|
|
S11 * S22 - S21 * S12,
|
|
S12 * S20 - S22 * S10,
|
|
S10 * S21 - S20 * S11,
|
|
S02 * S21 - S01 * S22,
|
|
S00 * S22 - S02 * S20,
|
|
S01 * S20 - S00 * S21,
|
|
S12 * S01 - S11 * S02,
|
|
S10 * S02 - S12 * S00,
|
|
S11 * S00 - S10 * S01);
|
|
|
|
T Determinant = S00 * (S11 * S22 - S21 * S12)
|
|
- S10 * (S01 * S22 - S21 * S02)
|
|
+ S20 * (S01 * S12 - S11 * S02);
|
|
|
|
Inverse /= Determinant;
|
|
return Inverse;
|
|
}
|
|
|
|
col_type & operator[](size_type i)
|
|
{
|
|
assert(i < this->length());
|
|
return this->value[i];
|
|
}
|
|
|
|
col_type const & operator[](size_type i) const
|
|
{
|
|
assert(i < this->length());
|
|
return this->value[i];
|
|
}
|
|
|
|
tmat3x3<T> & operator=(tmat3x3<T> const & m)
|
|
{
|
|
this->value[0] = m[0];
|
|
this->value[1] = m[1];
|
|
this->value[2] = m[2];
|
|
return *this;
|
|
}
|
|
template <typename U>
|
|
tmat3x3<T> & operator=(tmat3x3<U> const & m)
|
|
{
|
|
this->value[0] = m[0];
|
|
this->value[1] = m[1];
|
|
this->value[2] = m[2];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat3x3<T> & operator+= (U const & s)
|
|
{
|
|
this->value[0] += s;
|
|
this->value[1] += s;
|
|
this->value[2] += s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat3x3<T> & operator+=(tmat3x3<U> const & m)
|
|
{
|
|
this->value[0] += m[0];
|
|
this->value[1] += m[1];
|
|
this->value[2] += m[2];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat3x3<T> & operator-= (U const & s)
|
|
{
|
|
this->value[0] -= s;
|
|
this->value[1] -= s;
|
|
this->value[2] -= s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat3x3<T> & operator-= (tmat3x3<U> const & m)
|
|
{
|
|
this->value[0] -= m[0];
|
|
this->value[1] -= m[1];
|
|
this->value[2] -= m[2];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat3x3<T> & operator*= (U const & s)
|
|
{
|
|
this->value[0] *= s;
|
|
this->value[1] *= s;
|
|
this->value[2] *= s;
|
|
return *this;
|
|
}
|
|
template <typename U>
|
|
tmat3x3<T> & operator*= (tmat3x3<U> const & m)
|
|
{
|
|
return (*this = *this * m);
|
|
}
|
|
|
|
template <typename U>
|
|
tmat3x3<T> & operator/= (U const & s)
|
|
{
|
|
this->value[0] /= s;
|
|
this->value[1] /= s;
|
|
this->value[2] /= s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat3x3<T> & operator/= (tmat3x3<U> const & m)
|
|
{
|
|
return (*this = *this / m);
|
|
}
|
|
|
|
tmat3x3<T> & operator++ ()
|
|
{
|
|
++this->value[0];
|
|
++this->value[1];
|
|
++this->value[2];
|
|
return *this;
|
|
}
|
|
tmat3x3<T> & operator-- ()
|
|
{
|
|
--this->value[0];
|
|
--this->value[1];
|
|
--this->value[2];
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator+ (tmat3x3<T> const & m, T const & s)
|
|
{
|
|
return tmat3x3<T>(
|
|
m[0] + s,
|
|
m[1] + s,
|
|
m[2] + s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator+ (T const & s, tmat3x3<T> const & m)
|
|
{
|
|
return tmat3x3<T>(
|
|
m[0] + s,
|
|
m[1] + s,
|
|
m[2] + s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator+ (tmat3x3<T> const & m1, tmat3x3<T> const & m2)
|
|
{
|
|
return tmat3x3<T>(
|
|
m1[0] + m2[0],
|
|
m1[1] + m2[1],
|
|
m1[2] + m2[2]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator- (tmat3x3<T> const & m, T const & s)
|
|
{
|
|
return tmat3x3<T>(
|
|
m[0] - s,
|
|
m[1] - s,
|
|
m[2] - s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator- (T const & s, tmat3x3<T> const & m)
|
|
{
|
|
return tmat3x3<T>(
|
|
s - m[0],
|
|
s - m[1],
|
|
s - m[2]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator- (tmat3x3<T> const & m1, tmat3x3<T> const & m2)
|
|
{
|
|
return tmat3x3<T>(
|
|
m1[0] - m2[0],
|
|
m1[1] - m2[1],
|
|
m1[2] - m2[2]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator* (tmat3x3<T> const & m, T const & s)
|
|
{
|
|
return tmat3x3<T>(
|
|
m[0] * s,
|
|
m[1] * s,
|
|
m[2] * s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator* (T const & s, tmat3x3<T> const & m)
|
|
{
|
|
return tmat3x3<T>(
|
|
m[0] * s,
|
|
m[1] * s,
|
|
m[2] * s);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator* (tmat3x3<T> const & m, tvec3<T> const & v)
|
|
{
|
|
return tvec3<T>(
|
|
m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z,
|
|
m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z,
|
|
m[0][2] * v.x + m[1][2] * v.y + m[2][2] * v.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator* (tvec3<T> const & v, tmat3x3<T> const & m)
|
|
{
|
|
return tvec3<T>(
|
|
m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z,
|
|
m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z,
|
|
m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator* (tmat3x3<T> const & m1, tmat3x3<T> const & m2)
|
|
{
|
|
T const srcA00 = m1[0][0];
|
|
T const srcA01 = m1[0][1];
|
|
T const srcA02 = m1[0][2];
|
|
T const srcA10 = m1[1][0];
|
|
T const srcA11 = m1[1][1];
|
|
T const srcA12 = m1[1][2];
|
|
T const srcA20 = m1[2][0];
|
|
T const srcA21 = m1[2][1];
|
|
T const srcA22 = m1[2][2];
|
|
|
|
T const srcB00 = m2[0][0];
|
|
T const srcB01 = m2[0][1];
|
|
T const srcB02 = m2[0][2];
|
|
T const srcB10 = m2[1][0];
|
|
T const srcB11 = m2[1][1];
|
|
T const srcB12 = m2[1][2];
|
|
T const srcB20 = m2[2][0];
|
|
T const srcB21 = m2[2][1];
|
|
T const srcB22 = m2[2][2];
|
|
|
|
tmat3x3<T> res;
|
|
res[0][0] = srcA00 * srcB00 + srcA10 * srcB01 + srcA20 * srcB02;
|
|
res[0][1] = srcA01 * srcB00 + srcA11 * srcB01 + srcA21 * srcB02;
|
|
res[0][2] = srcA02 * srcB00 + srcA12 * srcB01 + srcA22 * srcB02;
|
|
res[1][0] = srcA00 * srcB10 + srcA10 * srcB11 + srcA20 * srcB12;
|
|
res[1][1] = srcA01 * srcB10 + srcA11 * srcB11 + srcA21 * srcB12;
|
|
res[1][2] = srcA02 * srcB10 + srcA12 * srcB11 + srcA22 * srcB12;
|
|
res[2][0] = srcA00 * srcB20 + srcA10 * srcB21 + srcA20 * srcB22;
|
|
res[2][1] = srcA01 * srcB20 + srcA11 * srcB21 + srcA21 * srcB22;
|
|
res[2][2] = srcA02 * srcB20 + srcA12 * srcB21 + srcA22 * srcB22;
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator/ (tmat3x3<T> const & m, T const & s)
|
|
{
|
|
return tmat3x3<T>(
|
|
m[0] / s,
|
|
m[1] / s,
|
|
m[2] / s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator/ (T const & s, tmat3x3<T> const & m)
|
|
{
|
|
return tmat3x3<T>(
|
|
s / m[0],
|
|
s / m[1],
|
|
s / m[2]
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator/ (tmat3x3<T> const & m, tvec3<T> const & v)
|
|
{
|
|
return m._inverse() * v;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator/ (tvec3<T> const & v, tmat3x3<T> const & m)
|
|
{
|
|
return v * m._inverse();
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> operator/ (tmat3x3<T> const & m1, tmat3x3<T> const & m2)
|
|
{
|
|
return m1 * m2._inverse();
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> const operator- (tmat3x3<T> const & m)
|
|
{
|
|
return tmat3x3<T>(
|
|
-m[0],
|
|
-m[1],
|
|
-m[2]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> const operator++ (tmat3x3<T> const & m, int)
|
|
{
|
|
return tmat3x3<T>(
|
|
m[0] + T(1),
|
|
m[1] + T(1),
|
|
m[2] + T(1));
|
|
}
|
|
|
|
template <typename T>
|
|
tmat3x3<T> const operator-- (tmat3x3<T> const & m, int)
|
|
{
|
|
return tmat3x3<T>(
|
|
m[0] - T(1),
|
|
m[1] - T(1),
|
|
m[2] - T(1));
|
|
}
|
|
template <typename T>
|
|
bool operator==(tmat3x3<T> const & m1, tmat3x3<T> const & m2)
|
|
{
|
|
return (m1[0] == m2[0]) && (m1[1] == m2[1]) && (m1[2] == m2[2]);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(tmat3x3<T> const & m1, tmat3x3<T> const & m2)
|
|
{
|
|
return (m1[0] != m2[0]) || (m1[1] != m2[1]) || (m1[2] != m2[2]);
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
struct tmat4x4
|
|
{
|
|
typedef T value_type;
|
|
typedef std::size_t size_type;
|
|
typedef tvec4<T> col_type;
|
|
typedef tvec4<T> row_type;
|
|
typedef tmat4x4<T> type;
|
|
typedef tmat4x4<T> transpose_type;
|
|
|
|
|
|
public:
|
|
tmat4x4<T> inverse() const
|
|
{
|
|
value_type subFactor00 = this->value[2][2] * this->value[3][3] - this->value[3][2] * this->value[2][3];
|
|
value_type subFactor01 = this->value[2][1] * this->value[3][3] - this->value[3][1] * this->value[2][3];
|
|
value_type subFactor02 = this->value[2][1] * this->value[3][2] - this->value[3][1] * this->value[2][2];
|
|
value_type subFactor03 = this->value[2][0] * this->value[3][3] - this->value[3][0] * this->value[2][3];
|
|
value_type subFactor04 = this->value[2][0] * this->value[3][2] - this->value[3][0] * this->value[2][2];
|
|
value_type subFactor05 = this->value[2][0] * this->value[3][1] - this->value[3][0] * this->value[2][1];
|
|
value_type subFactor06 = this->value[1][2] * this->value[3][3] - this->value[3][2] * this->value[1][3];
|
|
value_type subFactor07 = this->value[1][1] * this->value[3][3] - this->value[3][1] * this->value[1][3];
|
|
value_type subFactor08 = this->value[1][1] * this->value[3][2] - this->value[3][1] * this->value[1][2];
|
|
value_type subFactor09 = this->value[1][0] * this->value[3][3] - this->value[3][0] * this->value[1][3];
|
|
value_type subFactor10 = this->value[1][0] * this->value[3][2] - this->value[3][0] * this->value[1][2];
|
|
value_type subFactor11 = this->value[1][1] * this->value[3][3] - this->value[3][1] * this->value[1][3];
|
|
value_type SubFactor12 = this->value[1][0] * this->value[3][1] - this->value[3][0] * this->value[1][1];
|
|
value_type subFactor13 = this->value[1][2] * this->value[2][3] - this->value[2][2] * this->value[1][3];
|
|
value_type subFactor14 = this->value[1][1] * this->value[2][3] - this->value[2][1] * this->value[1][3];
|
|
value_type subFactor15 = this->value[1][1] * this->value[2][2] - this->value[2][1] * this->value[1][2];
|
|
value_type subFactor16 = this->value[1][0] * this->value[2][3] - this->value[2][0] * this->value[1][3];
|
|
value_type subFactor17 = this->value[1][0] * this->value[2][2] - this->value[2][0] * this->value[1][2];
|
|
value_type subFactor18 = this->value[1][0] * this->value[2][1] - this->value[2][0] * this->value[1][1];
|
|
|
|
tmat4x4<T> res(
|
|
+ this->value[1][1] * subFactor00 - this->value[1][2] * subFactor01 + this->value[1][3] * subFactor02,
|
|
- this->value[1][0] * subFactor00 + this->value[1][2] * subFactor03 - this->value[1][3] * subFactor04,
|
|
+ this->value[1][0] * subFactor01 - this->value[1][1] * subFactor03 + this->value[1][3] * subFactor05,
|
|
- this->value[1][0] * subFactor02 + this->value[1][1] * subFactor04 - this->value[1][2] * subFactor05,
|
|
|
|
- this->value[0][1] * subFactor00 + this->value[0][2] * subFactor01 - this->value[0][3] * subFactor02,
|
|
+ this->value[0][0] * subFactor00 - this->value[0][2] * subFactor03 + this->value[0][3] * subFactor04,
|
|
- this->value[0][0] * subFactor01 + this->value[0][1] * subFactor03 - this->value[0][3] * subFactor05,
|
|
+ this->value[0][0] * subFactor02 - this->value[0][1] * subFactor04 + this->value[0][2] * subFactor05,
|
|
|
|
+ this->value[0][1] * subFactor06 - this->value[0][2] * subFactor07 + this->value[0][3] * subFactor08,
|
|
- this->value[0][0] * subFactor06 + this->value[0][2] * subFactor09 - this->value[0][3] * subFactor10,
|
|
+ this->value[0][0] * subFactor11 - this->value[0][1] * subFactor09 + this->value[0][3] * SubFactor12,
|
|
- this->value[0][0] * subFactor08 + this->value[0][1] * subFactor10 - this->value[0][2] * SubFactor12,
|
|
|
|
- this->value[0][1] * subFactor13 + this->value[0][2] * subFactor14 - this->value[0][3] * subFactor15,
|
|
+ this->value[0][0] * subFactor13 - this->value[0][2] * subFactor16 + this->value[0][3] * subFactor17,
|
|
- this->value[0][0] * subFactor14 + this->value[0][1] * subFactor16 - this->value[0][3] * subFactor18,
|
|
+ this->value[0][0] * subFactor15 - this->value[0][1] * subFactor17 + this->value[0][2] * subFactor18);
|
|
|
|
value_type determinant =
|
|
+ this->value[0][0] * res[0][0]
|
|
+ this->value[0][1] * res[1][0]
|
|
+ this->value[0][2] * res[2][0]
|
|
+ this->value[0][3] * res[3][0];
|
|
|
|
res /= determinant;
|
|
return res;
|
|
}
|
|
|
|
|
|
private:
|
|
col_type value[4];
|
|
public:
|
|
|
|
size_type length() const
|
|
{
|
|
return 4;
|
|
}
|
|
size_type col_size()
|
|
{
|
|
return 4;
|
|
}
|
|
size_type row_size()
|
|
{
|
|
return 4;
|
|
}
|
|
void identify()
|
|
{
|
|
this->value[0] = col_type(1, 0, 0, 0);
|
|
this->value[1] = col_type(0, 1, 0, 0);
|
|
this->value[2] = col_type(0, 0, 1, 0);
|
|
this->value[3] = col_type(0, 0, 0, 1);
|
|
}
|
|
col_type & operator[](size_type i)
|
|
{
|
|
assert(i < this->length());
|
|
return this->value[i];
|
|
}
|
|
|
|
col_type const & operator[](size_type i) const
|
|
{
|
|
assert(i < this->length());
|
|
return this->value[i];
|
|
}
|
|
|
|
tmat4x4(tmat4x4<T> const & m)
|
|
{
|
|
this->value[0] = m.value[0];
|
|
this->value[1] = m.value[1];
|
|
this->value[2] = m.value[2];
|
|
this->value[3] = m.value[3];
|
|
}
|
|
|
|
tmat4x4(tmat3x3<T> const & m)
|
|
{
|
|
this->value[0] = col_type(m[0], value_type(0));
|
|
this->value[1] = col_type(m[1], value_type(0));
|
|
this->value[2] = col_type(m[2], value_type(0));
|
|
this->value[3] = col_type(value_type(0), value_type(0), value_type(0), value_type(1));
|
|
}
|
|
tmat4x4()
|
|
{
|
|
}
|
|
|
|
tmat4x4(value_type s)
|
|
{
|
|
value_type const Zero(0);
|
|
this->value[0] = col_type(s, Zero, Zero, Zero);
|
|
this->value[1] = col_type(Zero, s, Zero, Zero);
|
|
this->value[2] = col_type(Zero, Zero, s, Zero);
|
|
this->value[3] = col_type(Zero, Zero, Zero, s);
|
|
}
|
|
|
|
tmat4x4
|
|
(
|
|
value_type const & x0, value_type const & y0, value_type const & z0, value_type const & w0,
|
|
value_type const & x1, value_type const & y1, value_type const & z1, value_type const & w1,
|
|
value_type const & x2, value_type const & y2, value_type const & z2, value_type const & w2,
|
|
value_type const & x3, value_type const & y3, value_type const & z3, value_type const & w3
|
|
)
|
|
{
|
|
this->value[0] = col_type(x0, y0, z0, w0);
|
|
this->value[1] = col_type(x1, y1, z1, w1);
|
|
this->value[2] = col_type(x2, y2, z2, w2);
|
|
this->value[3] = col_type(x3, y3, z3, w3);
|
|
}
|
|
|
|
tmat4x4
|
|
(
|
|
col_type const & v0,
|
|
col_type const & v1,
|
|
col_type const & v2,
|
|
col_type const & v3
|
|
)
|
|
{
|
|
this->value[0] = v0;
|
|
this->value[1] = v1;
|
|
this->value[2] = v2;
|
|
this->value[3] = v3;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4(tmat4x4<U> const & m)
|
|
{
|
|
this->value[0] = col_type(m[0]);
|
|
this->value[1] = col_type(m[1]);
|
|
this->value[2] = col_type(m[2]);
|
|
this->value[3] = col_type(m[3]);
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4(U const & s)
|
|
{
|
|
value_type const Zero(0);
|
|
this->value[0] = tvec4<T>(value_type(s), Zero, Zero, Zero);
|
|
this->value[1] = tvec4<T>(Zero, value_type(s), Zero, Zero);
|
|
this->value[2] = tvec4<T>(Zero, Zero, value_type(s), Zero);
|
|
this->value[3] = tvec4<T>(Zero, Zero, Zero, value_type(s));
|
|
}
|
|
template <
|
|
typename X1, typename Y1, typename Z1, typename W1,
|
|
typename X2, typename Y2, typename Z2, typename W2,
|
|
typename X3, typename Y3, typename Z3, typename W3,
|
|
typename X4, typename Y4, typename Z4, typename W4>
|
|
tmat4x4
|
|
(
|
|
X1 const & x1, Y1 const & y1, Z1 const & z1, W1 const & w1,
|
|
X2 const & x2, Y2 const & y2, Z2 const & z2, W2 const & w2,
|
|
X3 const & x3, Y3 const & y3, Z3 const & z3, W3 const & w3,
|
|
X4 const & x4, Y4 const & y4, Z4 const & z4, W4 const & w4
|
|
)
|
|
{
|
|
this->value[0] = col_type(value_type(x1), value_type(y1), value_type(z1), value_type(w1));
|
|
this->value[1] = col_type(value_type(x2), value_type(y2), value_type(z2), value_type(w2));
|
|
this->value[2] = col_type(value_type(x3), value_type(y3), value_type(z3), value_type(w3));
|
|
this->value[3] = col_type(value_type(x4), value_type(y4), value_type(z4), value_type(w4));
|
|
}
|
|
template <typename V1, typename V2, typename V3, typename V4>
|
|
tmat4x4
|
|
(
|
|
tvec4<V1> const & v1,
|
|
tvec4<V2> const & v2,
|
|
tvec4<V3> const & v3,
|
|
tvec4<V4> const & v4
|
|
)
|
|
{
|
|
this->value[0] = col_type(v1);
|
|
this->value[1] = col_type(v2);
|
|
this->value[2] = col_type(v3);
|
|
this->value[3] = col_type(v4);
|
|
}
|
|
|
|
T const * data() const
|
|
{
|
|
return &this->value[0][0];
|
|
}
|
|
tmat4x4<T>& operator= (tmat4x4<T> const & m)
|
|
{
|
|
this->value[0] = m[0];
|
|
this->value[1] = m[1];
|
|
this->value[2] = m[2];
|
|
this->value[3] = m[3];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4<T>& operator= (tmat4x4<U> const & m)
|
|
{
|
|
this->value[0] = m[0];
|
|
this->value[1] = m[1];
|
|
this->value[2] = m[2];
|
|
this->value[3] = m[3];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4<T>& operator+= (U const & s)
|
|
{
|
|
this->value[0] += s;
|
|
this->value[1] += s;
|
|
this->value[2] += s;
|
|
this->value[3] += s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4<T>& operator+= (tmat4x4<U> const & m)
|
|
{
|
|
this->value[0] += m[0];
|
|
this->value[1] += m[1];
|
|
this->value[2] += m[2];
|
|
this->value[3] += m[3];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4<T> & operator-= (U const & s)
|
|
{
|
|
this->value[0] -= s;
|
|
this->value[1] -= s;
|
|
this->value[2] -= s;
|
|
this->value[3] -= s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4<T> & operator-= (tmat4x4<U> const & m)
|
|
{
|
|
this->value[0] -= m[0];
|
|
this->value[1] -= m[1];
|
|
this->value[2] -= m[2];
|
|
this->value[3] -= m[3];
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4<T> & operator*= (U const & s)
|
|
{
|
|
this->value[0] *= s;
|
|
this->value[1] *= s;
|
|
this->value[2] *= s;
|
|
this->value[3] *= s;
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4<T> & operator*= (tmat4x4<U> const & m)
|
|
{
|
|
return (*this = *this * m);
|
|
}
|
|
|
|
template <typename U>
|
|
tmat4x4<T> & operator/= (U const & s)
|
|
{
|
|
this->value[0] /= s;
|
|
this->value[1] /= s;
|
|
this->value[2] /= s;
|
|
this->value[3] /= s;
|
|
return *this;
|
|
}
|
|
template <typename U>
|
|
tmat4x4<T> & operator/= (tmat4x4<U> const & m)
|
|
{
|
|
return (*this = *this / m);
|
|
}
|
|
|
|
tmat4x4<T> & operator++ ()
|
|
{
|
|
++this->value[0];
|
|
++this->value[1];
|
|
++this->value[2];
|
|
++this->value[3];
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T> & operator-- ()
|
|
{
|
|
--this->value[0];
|
|
--this->value[1];
|
|
--this->value[2];
|
|
--this->value[3];
|
|
return *this;
|
|
}
|
|
tmat4x4<T>& translate( value_type x,value_type y,value_type z)
|
|
{
|
|
this->value[0] = col_type(1, 0, 0, 0);
|
|
this->value[1] = col_type(0, 1, 0, 0);
|
|
this->value[2] = col_type(0, 0, 1, 0);
|
|
this->value[3] = col_type(x, y, z, 1);
|
|
return *this;
|
|
}
|
|
template<typename U>
|
|
tmat4x4<T>& translate( U x,U y,U z)
|
|
{
|
|
this->value[0] = col_type(1, 0, 0, 0);
|
|
this->value[1] = col_type(0, 1, 0, 0);
|
|
this->value[2] = col_type(0, 0, 1, 0);
|
|
this->value[3] = col_type(T(x), T(y), T(z), 1);
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T>& translate(tvec3<T> const& pos)
|
|
{
|
|
this->value[0] = col_type(1, 0, 0, 0);
|
|
this->value[1] = col_type(0, 1, 0, 0);
|
|
this->value[2] = col_type(0, 0, 1, 0);
|
|
this->value[3] = col_type(pos.x,pos.y, pos.z, 1);
|
|
return *this;
|
|
}
|
|
template<typename U>
|
|
tmat4x4<T>& translate(tvec3<U> const& pos)
|
|
{
|
|
this->value[0] = col_type(1, 0, 0, 0);
|
|
this->value[1] = col_type(0, 1, 0, 0);
|
|
this->value[2] = col_type(0, 0, 1, 0);
|
|
this->value[3] = col_type(T(pos.x),T(pos.y), T(pos.z), 1);
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T>& rotate(value_type angle,tvec3<T> const & v )
|
|
{
|
|
T a = DEG2RAD(angle);
|
|
T c = cos(a);
|
|
T s = sin(a);
|
|
|
|
tvec3<T> axis = normalize(v);
|
|
|
|
tvec3<T> temp = (T(1) - c) * axis;
|
|
|
|
tmat4x4<T> res;
|
|
this->value[0][0] = c + temp[0] * axis[0];
|
|
this->value[0][1] = 0 + temp[0] * axis[1] + s * axis[2];
|
|
this->value[0][2] = 0 + temp[0] * axis[2] - s * axis[1];
|
|
this->value[0][3] = 0;
|
|
|
|
this->value[1][0] = 0 + temp[1] * axis[0] - s * axis[2];
|
|
this->value[1][1] = c + temp[1] * axis[1];
|
|
this->value[1][2] = 0 + temp[1] * axis[2] + s * axis[0];
|
|
this->value[1][3] = 0;
|
|
|
|
this->value[2][0] = 0 + temp[2] * axis[0] + s * axis[1];
|
|
this->value[2][1] = 0 + temp[2] * axis[1] - s * axis[0];
|
|
this->value[2][2] = c + temp[2] * axis[2];
|
|
this->value[2][3] = 0;
|
|
|
|
this->value[3][0] = 0;
|
|
this->value[3][1] = 0;
|
|
this->value[3][2] = 0;
|
|
this->value[3][3] = 1;
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T>& rotateX(value_type angle)
|
|
{
|
|
T a = DEG2RAD(angle);
|
|
T c = cos(a);
|
|
T s = sin(a);
|
|
|
|
this->value[0] = col_type(1, 0, 0, 0);
|
|
this->value[1] = col_type(0, c, s, 0);
|
|
this->value[2] = col_type(0,-s, c, 0);
|
|
this->value[3] = col_type(0, 0, 0, 1);
|
|
|
|
return *this;
|
|
}
|
|
template<typename U>
|
|
tmat4x4<T>& rotateX(U angle)
|
|
{
|
|
T a = DEG2RAD(angle);
|
|
T c = cos(a);
|
|
T s = sin(a);
|
|
|
|
this->value[0] = col_type(1, 0, 0, 0);
|
|
this->value[1] = col_type(0, c, s, 0);
|
|
this->value[2] = col_type(0,-s, c, 0);
|
|
this->value[3] = col_type(0, 0, 0, 1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T>& rotateY(value_type angle)
|
|
{
|
|
T a = DEG2RAD(angle);
|
|
T c = cos(a);
|
|
T s = sin(a);
|
|
|
|
this->value[0] = col_type(c, 0,-s, 0);
|
|
this->value[1] = col_type(0, 1, 0, 0);
|
|
this->value[2] = col_type(s, 0, c, 0);
|
|
this->value[3] = col_type(0, 0, 0, 1);
|
|
return *this;
|
|
|
|
}
|
|
template<typename U>
|
|
tmat4x4<T>& rotateY(U angle)
|
|
{
|
|
T a = DEG2RAD(angle);
|
|
T c = cos(a);
|
|
T s = sin(a);
|
|
|
|
this->value[0] = col_type(c, 0,-s, 0);
|
|
this->value[1] = col_type(0, 1, 0, 0);
|
|
this->value[2] = col_type(s, 0, c, 0);
|
|
this->value[3] = col_type(0, 0, 0, 1);
|
|
return *this;
|
|
|
|
}
|
|
tmat4x4<T>& rotateZ(value_type angle)
|
|
{
|
|
T a = T(DEG2RAD(angle));
|
|
T c = cos(a);
|
|
T s = sin(a);
|
|
|
|
this->value[0] = col_type( c, s, 0, 0);
|
|
this->value[1] = col_type(-s, c, 0, 0);
|
|
this->value[2] = col_type( 0, 0, 1, 0);
|
|
this->value[3] = col_type( 0, 0, 0, 1);
|
|
return *this;
|
|
}
|
|
template<typename U>
|
|
tmat4x4<T>& rotateZ(U angle)
|
|
{
|
|
T a = DEG2RAD(angle);
|
|
|
|
T c = cos(a);
|
|
T s = sin(a);
|
|
|
|
this->value[0] = col_type( c, s, 0, 0);
|
|
this->value[1] = col_type(-s, c, 0, 0);
|
|
this->value[2] = col_type( 0, 0, 1, 0);
|
|
this->value[3] = col_type( 0, 0, 0, 1);
|
|
return *this;
|
|
}
|
|
|
|
|
|
tmat4x4<T> rotateXY(T angleX, T angleY)
|
|
{
|
|
T cosX = cos(DEG2RAD(angleX));
|
|
T sinX = sin(DEG2RAD(angleX));
|
|
T cosY = cos(DEG2RAD(angleY));
|
|
T sinY = sin(DEG2RAD(angleY));
|
|
|
|
|
|
this->value[0] = col_type( cosY, -sinX * sinY, cosX * sinY,0);
|
|
this->value[1] = col_type( 0, cosX, sinX, 0);
|
|
this->value[2] = col_type( -sinY , -sinX * cosY, cosX * cosY,0);
|
|
this->value[3] = col_type( 0, 0, 0, 1);
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T> rotateYX(T angleX, T angleY)
|
|
{
|
|
T cosX = cos(DEG2RAD(angleX));
|
|
T sinX = sin(DEG2RAD(angleX));
|
|
T cosY = cos(DEG2RAD(angleY));
|
|
T sinY = sin(DEG2RAD(angleY));
|
|
|
|
|
|
this->value[0] = col_type( cosY, 0, sinY, 0);
|
|
this->value[1] = col_type( -sinX * sinY,cosX, sinX * cosY,0);
|
|
this->value[2] = col_type( -cosX * sinY,-sinX, cosX * cosY,0);
|
|
this->value[3] = col_type( 0, 0, 0, 1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T> rotateYXZ( T yaw, T pitch, T roll)
|
|
{
|
|
T tmp_ch = cos(DEG2RAD(yaw));
|
|
T tmp_sh = sin(DEG2RAD(yaw));
|
|
T tmp_cp = cos(DEG2RAD(pitch));
|
|
T tmp_sp = sin(DEG2RAD(pitch));
|
|
T tmp_cb = cos(DEG2RAD(roll));
|
|
T tmp_sb = sin(DEG2RAD(roll));
|
|
|
|
tmat4x4<T> Result;
|
|
this->value[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb;
|
|
this->value[0][1] = tmp_sb * tmp_cp;
|
|
this->value[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb;
|
|
this->value[0][3] = T(0);
|
|
this->value[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb;
|
|
this->value[1][1] = tmp_cb * tmp_cp;
|
|
this->value[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb;
|
|
this->value[1][3] = T(0);
|
|
this->value[2][0] = tmp_sh * tmp_cp;
|
|
this->value[2][1] = -tmp_sp;
|
|
this->value[2][2] = tmp_ch * tmp_cp;
|
|
this->value[2][3] = T(0);
|
|
this->value[3][0] = T(0);
|
|
this->value[3][1] = T(0);
|
|
this->value[3][2] = T(0);
|
|
this->value[3][3] = T(1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T> yawPitchRoll( T yaw, T pitch, T roll)
|
|
{
|
|
T tmp_ch = cos(DEG2RAD(yaw));
|
|
T tmp_sh = sin(DEG2RAD(yaw));
|
|
T tmp_cp = cos(DEG2RAD(pitch));
|
|
T tmp_sp = sin(DEG2RAD(pitch));
|
|
T tmp_cb = cos(DEG2RAD(roll));
|
|
T tmp_sb = sin(DEG2RAD(roll));
|
|
|
|
this->value[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb;
|
|
this->value[0][1] = tmp_sb * tmp_cp;
|
|
this->value[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb;
|
|
this->value[0][3] = T(0);
|
|
this->value[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb;
|
|
this->value[1][1] = tmp_cb * tmp_cp;
|
|
this->value[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb;
|
|
this->value[1][3] = T(0);
|
|
this->value[2][0] = tmp_sh * tmp_cp;
|
|
this->value[2][1] = -tmp_sp;
|
|
this->value[2][2] = tmp_ch * tmp_cp;
|
|
this->value[2][3] = T(0);
|
|
this->value[3][0] = T(0);
|
|
this->value[3][1] = T(0);
|
|
this->value[3][2] = T(0);
|
|
this->value[3][3] = T(1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T>& scale(tvec3<T> const& s)
|
|
{
|
|
this->value[0] = col_type(s[0], 0, 0, 0);
|
|
this->value[1] = col_type(0, s[1], 0, 0);
|
|
this->value[2] = col_type(0, 0, s[2], 0);
|
|
this->value[3] = col_type(0, 0, 0, 1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T>& scale(value_type x,value_type y,value_type z)
|
|
{
|
|
this->value[0] = col_type(x, 0, 0, 0);
|
|
this->value[1] = col_type(0, y, 0, 0);
|
|
this->value[2] = col_type(0, 0, z, 0);
|
|
this->value[3] = col_type(0, 0, 0, 1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename U>
|
|
tmat4x4<T>& scale(U x,U y,U z)
|
|
{
|
|
this->value[0] = col_type(value_type(x), 0, 0, 0);
|
|
this->value[1] = col_type(0, value_type(y), 0, 0);
|
|
this->value[2] = col_type(0, 0, value_type(z), 0);
|
|
this->value[3] = col_type(0, 0, 0, 1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename U,typename V,typename W>
|
|
tmat4x4<T>& scale(U x,V y,W z)
|
|
{
|
|
this->value[0] = col_type(value_type(x), 0, 0, 0);
|
|
this->value[1] = col_type(0, value_type(y), 0, 0);
|
|
this->value[2] = col_type(0, 0, value_type(z), 0);
|
|
this->value[3] = col_type(0, 0, 0, 1);
|
|
return *this;
|
|
}
|
|
|
|
tmat4x4<T> transpose( ) const
|
|
{
|
|
return tmat4x4<T>(
|
|
this->value[0][0], this->value[1][0], this->value[2][0], this->value[3][0],
|
|
this->value[0][1], this->value[1][1], this->value[2][1], this->value[3][1],
|
|
this->value[0][2], this->value[1][2], this->value[2][2], this->value[3][2],
|
|
this->value[0][3], this->value[1][3], this->value[2][3], this->value[3][3]
|
|
);
|
|
}
|
|
|
|
tmat4x4<T> extractMatrixRotation() const
|
|
{
|
|
return tmat4x4<T>(
|
|
this->value[0][0], this->value[0][1], this->value[0][2], 0.0,
|
|
this->value[1][0], this->value[1][1], this->value[1][2], 0.0,
|
|
this->value[2][0], this->value[2][1], this->value[2][2], 0.0,
|
|
0.0, 0.0, 0.0, 1.0
|
|
);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotateX(T angleX)
|
|
{
|
|
T cosX = cos(DEG2RAD(angleX));
|
|
T sinX = sin(DEG2RAD(angleX));
|
|
|
|
return tmat4x4<T>(
|
|
T(1), T(0), T(0), T(0),
|
|
T(0), cosX, sinX, T(0),
|
|
T(0),-sinX, cosX, T(0),
|
|
T(0), T(0), T(0), T(1));
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotateY(T angleY)
|
|
{
|
|
T cosY = cos(DEG2RAD(angleY));
|
|
T sinY = sin(DEG2RAD(angleY));
|
|
|
|
return tmat4x4<T>(
|
|
cosY, T(0), sinY, T(0),
|
|
T(0), T(1), T(0), T(0),
|
|
-sinY, T(0), cosY, T(0),
|
|
T(0), T(0), T(0), T(1));
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotateZ(T angleZ)
|
|
{
|
|
T cosZ = (T)cos(DEG2RAD(angleZ));
|
|
T sinZ = (T)sin(DEG2RAD(angleZ));
|
|
|
|
return tmat4x4<T>(
|
|
cosZ, sinZ, T(0), T(0),
|
|
-sinZ, cosZ, T(0), T(0),
|
|
T(0), T(0), T(1), T(0),
|
|
T(0), T(0), T(0), T(1));
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotateXY(T angleX, T angleY)
|
|
{
|
|
T cosX = cos(DEG2RAD(angleX));
|
|
T sinX = sin(DEG2RAD(angleX));
|
|
T cosY = cos(DEG2RAD(angleY));
|
|
T sinY = sin(DEG2RAD(angleY));
|
|
|
|
return tmat4x4<T>(
|
|
cosY, -sinX * sinY, cosX * sinY, T(0),
|
|
T(0), cosX, sinX, T(0),
|
|
-sinY, -sinX * cosY, cosX * cosY, T(0),
|
|
T(0), T(0), T(0), T(1));
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotateYX(T angleY, T angleX)
|
|
{
|
|
|
|
T cosX = cos(DEG2RAD(angleX));
|
|
T sinX = sin(DEG2RAD(angleX));
|
|
T cosY = cos(DEG2RAD(angleY));
|
|
T sinY = sin(DEG2RAD(angleY));
|
|
|
|
return tmat4x4<T>(
|
|
cosY, T(0), sinY, T(0),
|
|
-sinX * sinY, cosX, sinX * cosY, T(0),
|
|
-cosX * sinY, -sinX, cosX * cosY, T(0),
|
|
T(0), T(0), T(0), T(1));
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotateXZ(T angleX, T angleZ)
|
|
{
|
|
return rotateX(angleX) * rotateZ(angleZ);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotateZX(T angleX, T angleZ)
|
|
{
|
|
return rotateZ(angleZ) * rotateX(angleX);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotateYXZ(T yaw, T pitch, T roll)
|
|
{
|
|
T tmp_ch = cos(DEG2RAD(yaw));
|
|
T tmp_sh = sin(DEG2RAD(yaw));
|
|
T tmp_cp = cos(DEG2RAD(pitch));
|
|
T tmp_sp = sin(DEG2RAD(pitch));
|
|
T tmp_cb = cos(DEG2RAD(roll));
|
|
T tmp_sb = sin(DEG2RAD(roll));
|
|
|
|
tmat4x4<T> res;
|
|
res[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb;
|
|
res[0][1] = tmp_sb * tmp_cp;
|
|
res[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb;
|
|
res[0][3] = T(0);
|
|
res[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb;
|
|
res[1][1] = tmp_cb * tmp_cp;
|
|
res[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb;
|
|
res[1][3] = T(0);
|
|
res[2][0] = tmp_sh * tmp_cp;
|
|
res[2][1] = -tmp_sp;
|
|
res[2][2] = tmp_ch * tmp_cp;
|
|
res[2][3] = T(0);
|
|
res[3][0] = T(0);
|
|
res[3][1] = T(0);
|
|
res[3][2] = T(0);
|
|
res[3][3] = T(1);
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> yawPitchRoll(T yaw, T pitch, T roll)
|
|
{
|
|
T tmp_ch = cos(DEG2RAD(yaw));
|
|
T tmp_sh = sin(DEG2RAD(yaw));
|
|
T tmp_cp = cos(DEG2RAD(pitch));
|
|
T tmp_sp = sin(DEG2RAD(pitch));
|
|
T tmp_cb = cos(DEG2RAD(roll));
|
|
T tmp_sb = sin(DEG2RAD(roll));
|
|
|
|
|
|
tmat4x4<T> res;
|
|
res[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb;
|
|
res[0][1] = tmp_sb * tmp_cp;
|
|
res[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb;
|
|
res[0][3] = T(0);
|
|
res[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb;
|
|
res[1][1] = tmp_cb * tmp_cp;
|
|
res[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb;
|
|
res[1][3] = T(0);
|
|
res[2][0] = tmp_sh * tmp_cp;
|
|
res[2][1] = -tmp_sp;
|
|
res[2][2] = tmp_ch * tmp_cp;
|
|
res[2][3] = T(0);
|
|
res[3][0] = T(0);
|
|
res[3][1] = T(0);
|
|
res[3][2] = T(0);
|
|
res[3][3] = T(1);
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
void axisAngle
|
|
(
|
|
tmat4x4<T> const & mat,
|
|
tvec3<T> & axis,
|
|
T & angle
|
|
)
|
|
{
|
|
T epsilon = (T)0.01;
|
|
T epsilon2 = (T)0.1;
|
|
|
|
if ((fabs(mat[1][0] - mat[0][1]) < epsilon) &&
|
|
(fabs(mat[2][0] - mat[0][2]) < epsilon) &&
|
|
(fabs(mat[2][1] - mat[1][2]) < epsilon))
|
|
{
|
|
if ((fabs(mat[1][0] + mat[0][1]) < epsilon2) &&
|
|
(fabs(mat[2][0] + mat[0][2]) < epsilon2) &&
|
|
(fabs(mat[2][1] + mat[1][2]) < epsilon2) &&
|
|
(fabs(mat[0][0] + mat[1][1] + mat[2][2] - (T)3.0) < epsilon2))
|
|
{
|
|
angle = (T)0.0;
|
|
axis.x = (T)1.0;
|
|
axis.y = (T)0.0;
|
|
axis.z = (T)0.0;
|
|
return;
|
|
}
|
|
angle = T(3.1415926535897932384626433832795);
|
|
T xx = (mat[0][0] + (T)1.0) / (T)2.0;
|
|
T yy = (mat[1][1] + (T)1.0) / (T)2.0;
|
|
T zz = (mat[2][2] + (T)1.0) / (T)2.0;
|
|
T xy = (mat[1][0] + mat[0][1]) / (T)4.0;
|
|
T xz = (mat[2][0] + mat[0][2]) / (T)4.0;
|
|
T yz = (mat[2][1] + mat[1][2]) / (T)4.0;
|
|
if ((xx > yy) && (xx > zz))
|
|
{
|
|
if (xx < epsilon)
|
|
{
|
|
axis.x = (T)0.0;
|
|
axis.y = (T)0.7071;
|
|
axis.z = (T)0.7071;
|
|
}
|
|
else
|
|
{
|
|
axis.x = sqrt(xx);
|
|
axis.y = xy / axis.x;
|
|
axis.z = xz / axis.x;
|
|
}
|
|
}
|
|
else if (yy > zz)
|
|
{
|
|
if (yy < epsilon)
|
|
{
|
|
axis.x = (T)0.7071;
|
|
axis.y = (T)0.0;
|
|
axis.z = (T)0.7071;
|
|
}
|
|
else
|
|
{
|
|
axis.y = sqrt(yy);
|
|
axis.x = xy / axis.y;
|
|
axis.z = yz / axis.y;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (zz < epsilon)
|
|
{
|
|
axis.x = (T)0.7071;
|
|
axis.y = (T)0.7071;
|
|
axis.z = (T)0.0;
|
|
}
|
|
else
|
|
{
|
|
axis.z = sqrt(zz);
|
|
axis.x = xz / axis.z;
|
|
axis.y = yz / axis.z;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
T s = sqrt((mat[2][1] - mat[1][2]) * (mat[2][1] - mat[1][2]) + (mat[2][0] - mat[0][2]) * (mat[2][0] - mat[0][2]) + (mat[1][0] - mat[0][1]) * (mat[1][0] - mat[0][1]));
|
|
if (abs(s) < T(0.001))
|
|
s = (T)1.0;
|
|
angle = acos((mat[0][0] + mat[1][1] + mat[2][2] - (T)1.0) / (T)2.0);
|
|
axis.x = (mat[1][2] - mat[2][1]) / s;
|
|
axis.y = (mat[2][0] - mat[0][2]) / s;
|
|
axis.z = (mat[0][1] - mat[1][0]) / s;
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> axisAngleMatrix(tvec3<T> const & axis,T const angle)
|
|
{
|
|
T c = cos(angle);
|
|
T s = sin(angle);
|
|
T t = T(1) - c;
|
|
tvec3<T> n = normalize(axis);
|
|
|
|
return tmat4x4<T>(
|
|
t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, T(0),
|
|
t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, T(0),
|
|
t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, T(0),
|
|
T(0), T(0), T(0), T(1)
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> interpolate
|
|
(
|
|
tmat4x4<T> const & m1,
|
|
tmat4x4<T> const & m2,
|
|
T const delta
|
|
)
|
|
{
|
|
tmat4x4<T> m1rot = m1.extractMatrixRotation();
|
|
tmat4x4<T> dltRotation = m2 * m1rot.transpose();
|
|
tvec3<T> dltAxis;
|
|
T dltAngle;
|
|
axisAngle(dltRotation, dltAxis, dltAngle);
|
|
tmat4x4<T> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot;
|
|
out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]);
|
|
out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]);
|
|
out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]);
|
|
return out;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator * (tvec3<T> const& v, tmat4x4<T> const& mat)
|
|
{
|
|
return tvec3<T>
|
|
(
|
|
v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + 1*mat[3][0],
|
|
v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + 1*mat[3][1],
|
|
v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + 1*mat[3][2]
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator+ (tmat4x4<T> const & m, typename tmat4x4<T>::value_type s)
|
|
{
|
|
return tmat4x4<T>(
|
|
m[0] + s,
|
|
m[1] + s,
|
|
m[2] + s,
|
|
m[3] + s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator+ (typename tmat4x4<T>::value_type s, tmat4x4<T> const & m)
|
|
{
|
|
return tmat4x4<T>(
|
|
m[0] + s,
|
|
m[1] + s,
|
|
m[2] + s,
|
|
m[3] + s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator+ (tmat4x4<T> const & m1, tmat4x4<T> const & m2)
|
|
{
|
|
return tmat4x4<T>(
|
|
m1[0] + m2[0],
|
|
m1[1] + m2[1],
|
|
m1[2] + m2[2],
|
|
m1[3] + m2[3]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator- (tmat4x4<T> const & m, typename tmat4x4<T>::value_type s)
|
|
{
|
|
return tmat4x4<T>(
|
|
m[0] - s,
|
|
m[1] - s,
|
|
m[2] - s,
|
|
m[3] - s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator- (typename tmat4x4<T>::value_type s, tmat4x4<T> const & m)
|
|
{
|
|
return tmat4x4<T>(
|
|
s - m[0],
|
|
s - m[1],
|
|
s - m[2],
|
|
s - m[3]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator- (tmat4x4<T> const & m1, tmat4x4<T> const & m2)
|
|
{
|
|
return tmat4x4<T>(
|
|
m1[0] - m2[0],
|
|
m1[1] - m2[1],
|
|
m1[2] - m2[2],
|
|
m1[3] - m2[3]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator* (tmat4x4<T> const & m, typename tmat4x4<T>::value_type s)
|
|
{
|
|
return tmat4x4<T>(
|
|
m[0] * s,
|
|
m[1] * s,
|
|
m[2] * s,
|
|
m[3] * s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator* (typename tmat4x4<T>::value_type s, tmat4x4<T> const & m)
|
|
{
|
|
return tmat4x4<T>(
|
|
m[0] * s,
|
|
m[1] * s,
|
|
m[2] * s,
|
|
m[3] * s);
|
|
}
|
|
|
|
template <typename T>
|
|
typename tmat4x4<T>::col_type operator* (tmat4x4<T> const & m, typename tmat4x4<T>::row_type const & v)
|
|
{
|
|
return typename tmat4x4<T>::col_type(
|
|
m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z + m[3][0] * v.w,
|
|
m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z + m[3][1] * v.w,
|
|
m[0][2] * v.x + m[1][2] * v.y + m[2][2] * v.z + m[3][2] * v.w,
|
|
m[0][3] * v.x + m[1][3] * v.y + m[2][3] * v.z + m[3][3] * v.w);
|
|
}
|
|
|
|
template <typename T>
|
|
typename tmat4x4<T>::row_type operator* (typename tmat4x4<T>::col_type const & v, tmat4x4<T> const & m)
|
|
{
|
|
return typename tmat4x4<T>::row_type(
|
|
m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w,
|
|
m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
|
|
m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
|
|
m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w);
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator* (tmat4x4<T> const & m1, tmat4x4<T> const & m2)
|
|
{
|
|
typename tmat4x4<T>::col_type const srcA0 = m1[0];
|
|
typename tmat4x4<T>::col_type const srcA1 = m1[1];
|
|
typename tmat4x4<T>::col_type const srcA2 = m1[2];
|
|
typename tmat4x4<T>::col_type const srcA3 = m1[3];
|
|
|
|
typename tmat4x4<T>::col_type const srcB0 = m2[0];
|
|
typename tmat4x4<T>::col_type const srcB1 = m2[1];
|
|
typename tmat4x4<T>::col_type const srcB2 = m2[2];
|
|
typename tmat4x4<T>::col_type const srcB3 = m2[3];
|
|
|
|
tmat4x4<T> res;
|
|
res[0] = srcA0 * srcB0[0] + srcA1 * srcB0[1] + srcA2 * srcB0[2] + srcA3 * srcB0[3];
|
|
res[1] = srcA0 * srcB1[0] + srcA1 * srcB1[1] + srcA2 * srcB1[2] + srcA3 * srcB1[3];
|
|
res[2] = srcA0 * srcB2[0] + srcA1 * srcB2[1] + srcA2 * srcB2[2] + srcA3 * srcB2[3];
|
|
res[3] = srcA0 * srcB3[0] + srcA1 * srcB3[1] + srcA2 * srcB3[2] + srcA3 * srcB3[3];
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator/ (tmat4x4<T> const & m, typename tmat4x4<T>::value_type s)
|
|
{
|
|
return tmat4x4<T>(
|
|
m[0] / s,
|
|
m[1] / s,
|
|
m[2] / s,
|
|
m[3] / s);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator/ (typename tmat4x4<T>::value_type s, tmat4x4<T> const & m)
|
|
{
|
|
return tmat4x4<T>(
|
|
s / m[0],
|
|
s / m[1],
|
|
s / m[2],
|
|
s / m[3]);
|
|
}
|
|
|
|
template <typename T>
|
|
typename tmat4x4<T>::col_type operator/ (tmat4x4<T> const & m, typename tmat4x4<T>::row_type const & v)
|
|
{
|
|
return m.inverse() * v;
|
|
}
|
|
|
|
template <typename T>
|
|
typename tmat4x4<T>::row_type operator/ (typename tmat4x4<T>::col_type const & v, tmat4x4<T> const & m)
|
|
{
|
|
return v * m.inverse();
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> operator/ (tmat4x4<T> const & m1, tmat4x4<T> const & m2)
|
|
{
|
|
return m1 * m2.inverse();
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> const operator- (tmat4x4<T> const & m)
|
|
{
|
|
return tmat4x4<T>(
|
|
-m[0],
|
|
-m[1],
|
|
-m[2],
|
|
-m[3]);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> const operator++ (tmat4x4<T> const & m, int)
|
|
{
|
|
return tmat4x4<T>(
|
|
m[0] + T(1),
|
|
m[1] + T(1),
|
|
m[2] + T(1),
|
|
m[3] + T(1));
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> const operator-- (tmat4x4<T> const & m, int)
|
|
{
|
|
return tmat4x4<T>(
|
|
m[0] - T(1),
|
|
m[1] - T(1),
|
|
m[2] - T(1),
|
|
m[3] - T(1));
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator==(tmat4x4<T> const & m1, tmat4x4<T> const & m2)
|
|
{
|
|
return (m1[0] == m2[0]) && (m1[1] == m2[1]) && (m1[2] == m2[2]) && (m1[3] == m2[3]);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(tmat4x4<T> const & m1, tmat4x4<T> const & m2)
|
|
{
|
|
return (m1[0] != m2[0]) || (m1[1] != m2[1]) || (m1[2] != m2[2]) || (m1[3] != m2[3]);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//! 射线类
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
typename tvec2<T>::value_type length(tvec2<T> const & v)
|
|
{
|
|
typename tvec2<T>::value_type sqr = v.x * v.x + v.y * v.y;
|
|
return sqrt(sqr);
|
|
}
|
|
|
|
template <typename T>
|
|
typename tvec3<T>::value_type length(tvec3<T> const & v)
|
|
{
|
|
typename tvec3<T>::value_type sqr = v.x * v.x + v.y * v.y + v.z * v.z;
|
|
return sqrt(sqr);
|
|
}
|
|
|
|
template <typename T>
|
|
typename tvec4<T>::value_type length(tvec4<T> const & v)
|
|
{
|
|
typename tvec4<T>::value_type sqr = v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
|
|
return sqrt(sqr);
|
|
}
|
|
template <typename T>
|
|
typename tvec2<T>::value_type distance(tvec2<T> const & p0,tvec2<T> const & p1)
|
|
{
|
|
return length(p1 - p0);
|
|
}
|
|
|
|
template <typename T>
|
|
typename tvec3<T>::value_type distance(tvec3<T> const & p0,tvec3<T> const & p1)
|
|
{
|
|
return length(p1 - p0);
|
|
}
|
|
|
|
template <typename T>
|
|
typename tvec4<T>::value_type distance(tvec4<T> const & p0,tvec4<T> const & p1)
|
|
{
|
|
return length(p1 - p0);
|
|
}
|
|
|
|
template <typename T>
|
|
typename tvec2<T>::value_type dot(tvec2<T> const & x, tvec2<T> const & y)
|
|
{
|
|
return x.x * y.x + x.y * y.y;
|
|
}
|
|
|
|
template <typename T>
|
|
typename tvec3<T>::value_type dot(tvec3<T> const & x, tvec3<T> const & y)
|
|
{
|
|
return x.x * y.x + x.y * y.y + x.z * y.z;
|
|
}
|
|
template <typename T>
|
|
typename tvec4<T>::value_type dot(tvec4<T> const & x, tvec4<T> const & y)
|
|
{
|
|
return x.x * y.x + x.y * y.y + x.z * y.z + x.w * y.w;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> cross(tvec3<T> const & x, tvec3<T> const & y)
|
|
{
|
|
return tvec3<T>
|
|
(
|
|
x.y * y.z - y.y * x.z,
|
|
x.z * y.x - y.z * x.x,
|
|
x.x * y.y - y.x * x.y
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
T inversesqrt(T x)
|
|
{
|
|
return T(1) / sqrt(x);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec2<T> normalize(tvec2<T> const & x)
|
|
{
|
|
typename tvec2<T>::value_type sqr = x.x * x.x + x.y * x.y;
|
|
return x * inversesqrt(sqr);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> normalize(tvec3<T> const & x)
|
|
{
|
|
typename tvec3<T>::value_type sqr = x.x * x.x + x.y * x.y + x.z * x.z;
|
|
return x * inversesqrt(sqr);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec4<T> normalize(tvec4<T> const & x)
|
|
{
|
|
typename tvec4<T>::value_type sqr = x.x * x.x + x.y * x.y + x.z * x.z + x.w * x.w;
|
|
return x * inversesqrt(sqr);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
struct tquat
|
|
{
|
|
typedef T value_type;
|
|
typedef std::size_t size_type;
|
|
|
|
public:
|
|
value_type x;
|
|
value_type y;
|
|
value_type z;
|
|
value_type w;
|
|
|
|
size_type length() const
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
tquat():
|
|
x(0),
|
|
y(0),
|
|
z(0),
|
|
w(1)
|
|
{}
|
|
explicit tquat(value_type s, tvec3<T> const & v):
|
|
x(v.x),
|
|
y(v.y),
|
|
z(v.z),
|
|
w(s)
|
|
{
|
|
}
|
|
explicit tquat(tvec3<T> const & v,value_type s):
|
|
x(v.x),
|
|
y(v.y),
|
|
z(v.z),
|
|
w(s)
|
|
{
|
|
}
|
|
explicit tquat(value_type w, value_type x, value_type y, value_type z):
|
|
x(x),
|
|
y(y),
|
|
z(z),
|
|
w(w)
|
|
{}
|
|
|
|
explicit tquat(tvec3<T> const & eulerAngle)
|
|
{
|
|
tvec3<T> c = cos(eulerAngle * value_type(0.5));
|
|
tvec3<T> s = sin(eulerAngle * value_type(0.5));
|
|
|
|
this->w = c.x * c.y * c.z + s.x * s.y * s.z;
|
|
this->x = s.x * c.y * c.z - c.x * s.y * s.z;
|
|
this->y = c.x * s.y * c.z + s.x * c.y * s.z;
|
|
this->z = c.x * c.y * s.z - s.x * s.y * c.z;
|
|
}
|
|
|
|
explicit tquat(tmat3x3<T> const & m)
|
|
{
|
|
*this = quat_cast(m);
|
|
}
|
|
|
|
explicit tquat(tmat4x4<T> const & m)
|
|
{
|
|
*this = quat_cast(m);
|
|
}
|
|
|
|
value_type & operator[](int i)
|
|
{
|
|
return (&x)[i];
|
|
}
|
|
|
|
value_type const & operator[](int i) const
|
|
{
|
|
return (&x)[i];
|
|
}
|
|
|
|
tquat<T> & operator*=(value_type s)
|
|
{
|
|
this->w *= s;
|
|
this->x *= s;
|
|
this->y *= s;
|
|
this->z *= s;
|
|
return *this;
|
|
}
|
|
|
|
tquat<T> & operator = (const tquat<T>& right)
|
|
{
|
|
this->w = right.w;
|
|
this->x = right.x;
|
|
this->y = right.y;
|
|
this->z = right.z;
|
|
return *this;
|
|
}
|
|
|
|
tquat<T> & operator/=(value_type s)
|
|
{
|
|
this->w /= s;
|
|
this->x /= s;
|
|
this->y /= s;
|
|
this->z /= s;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
|
|
template< typename T>
|
|
tmat4x4<T> makeTransform( tvec3<T> const & position, tvec3<T> const& scale, const tquat<T>& orientation)
|
|
{
|
|
tmat3x3<T> rot3x3 = mat3_cast(orientation);
|
|
|
|
return tmat4x4<T>
|
|
(
|
|
scale.x * rot3x3[0][0], scale.x * rot3x3[0][1], scale.x * rot3x3[0][2], 0,
|
|
scale.y * rot3x3[1][0], scale.y * rot3x3[1][1], scale.y * rot3x3[1][2], 0,
|
|
scale.z * rot3x3[2][0], scale.z * rot3x3[2][1], scale.z * rot3x3[2][2], 0,
|
|
position.x, position.y, position.z, 1
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
T dot(tquat<T> const & q1, tquat<T> const & q2)
|
|
{
|
|
return q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w;
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> cross(tquat<T> const & q1, tquat<T> const & q2)
|
|
{
|
|
return tquat<T>(
|
|
q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z,
|
|
q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y,
|
|
q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z,
|
|
q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x);
|
|
}
|
|
|
|
template <typename T>
|
|
T length(tquat<T> const & q)
|
|
{
|
|
return sqrt(dot(q, q));
|
|
}
|
|
|
|
template <typename genType>
|
|
genType mix(genType x, genType y, genType a)
|
|
{
|
|
return x + a * (y - x);
|
|
}
|
|
|
|
template <typename T>
|
|
T epsilon()
|
|
{
|
|
return std::numeric_limits<T>::epsilon();
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
tquat<T> conjugate(tquat<T> const & q)
|
|
{
|
|
return tquat<T>(q.w, -q.x, -q.y, -q.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> inverse(tquat<T> const & q)
|
|
{
|
|
return conjugate(q) / dot(q, q);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator==(tquat<T> const & q1, tquat<T> const & q2)
|
|
{
|
|
return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(tquat<T> const & q1, tquat<T> const & q2)
|
|
{
|
|
return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w);
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> operator- (tquat<T> const & q)
|
|
{
|
|
return tquat<T>(-q.w, -q.x, -q.y, -q.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> operator+ ( tquat<T> const & q, tquat<T> const & p)
|
|
{
|
|
return tquat<T>(
|
|
q.w + p.w,
|
|
q.x + p.x,
|
|
q.y + p.y,
|
|
q.z + p.z
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> operator* ( tquat<T> const & q, tquat<T> const & p)
|
|
{
|
|
return tquat<T>(
|
|
q.w * p.w - q.x * p.x - q.y * p.y - q.z * p.z,
|
|
q.w * p.x + q.x * p.w + q.y * p.z - q.z * p.y,
|
|
q.w * p.y + q.y * p.w + q.z * p.x - q.x * p.z,
|
|
q.w * p.z + q.z * p.w + q.x * p.y - q.y * p.x
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator* (tquat<T> const & q, tvec3<T> const & v)
|
|
{
|
|
typename tquat<T>::value_type two(2);
|
|
|
|
tvec3<T> uv;
|
|
tvec3<T> uuv;
|
|
tvec3<T> quatVector(q.x, q.y, q.z);
|
|
uv = cross(quatVector, v);
|
|
uuv = cross(quatVector, uv);
|
|
uv *= two * q.w;
|
|
uuv *= two;
|
|
return v + uv + uuv;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> operator* (tvec3<T> const & v,tquat<T> const & q)
|
|
{
|
|
return inverse(q) * v;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
tquat<T> operator* (tquat<T> const & q, typename tquat<T>::value_type s)
|
|
{
|
|
return tquat<T>(q.w * s, q.x * s, q.y * s, q.z * s);
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> operator* (typename tquat<T>::value_type s,tquat<T> const & q)
|
|
{
|
|
return q * s;
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> operator/ (tquat<T> const & q, typename tquat<T>::value_type s)
|
|
{
|
|
return tquat<T>(q.w / s, q.x / s, q.y / s, q.z / s);
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
tquat<T> mix(tquat<T> const & x, tquat<T> const & y, T const & a)
|
|
{
|
|
T cosTheta = dot(x, y);
|
|
if(cosTheta > T(1) - epsilon<T>())
|
|
{
|
|
return tquat<T>(
|
|
mix(x.w, y.w, a),
|
|
mix(x.x, y.x, a),
|
|
mix(x.y, y.y, a),
|
|
mix(x.z, y.z, a)
|
|
);
|
|
}
|
|
else
|
|
{
|
|
// Essential Mathematics, page 467
|
|
T angle = acos(cosTheta);
|
|
return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> lerp(tquat<T> const & x, tquat<T> const & y, T a)
|
|
{
|
|
assert(a >= T(0));
|
|
assert(a <= T(1));
|
|
return x * (T(1) - a) + (y * a);
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> slerp(tquat<T> const & x, tquat<T> const & y, T a)
|
|
{
|
|
tquat<T> z = y;
|
|
|
|
T cosTheta = dot(x, y);
|
|
|
|
if (cosTheta < T(0))
|
|
{
|
|
z = -y;
|
|
cosTheta = -cosTheta;
|
|
}
|
|
if(cosTheta > T(1) - epsilon<T>())
|
|
{
|
|
return tquat<T>
|
|
(
|
|
mix(x.w, z.w, a),
|
|
mix(x.x, z.x, a),
|
|
mix(x.y, z.y, a),
|
|
mix(x.z, z.z, a)
|
|
);
|
|
}
|
|
else
|
|
{
|
|
// Essential Mathematics, page 467
|
|
T angle = acos(cosTheta);
|
|
return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
tquat<T> rotate
|
|
(
|
|
typename tquat<T>::value_type angle,
|
|
tvec3<T> const & axis
|
|
)
|
|
{
|
|
tvec3<T> Tmp = axis;
|
|
|
|
typename tquat<T>::value_type len = length(Tmp);
|
|
if(abs(len - T(1)) > T(0.001f))
|
|
{
|
|
T oneOverLen = T(1) / len;
|
|
Tmp.x *= oneOverLen;
|
|
Tmp.y *= oneOverLen;
|
|
Tmp.z *= oneOverLen;
|
|
}
|
|
typename tquat<T>::value_type const AngleRad = (T)DEG2RAD(angle);
|
|
typename tquat<T>::value_type const Sin = (T)sin(AngleRad * T(0.5));
|
|
return tquat<T>((T)cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin);
|
|
}
|
|
template <typename valType>
|
|
valType roll(tquat<valType> const & q)
|
|
{
|
|
return atan2(valType(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z) * valType(RAD2DEG);
|
|
}
|
|
|
|
template <typename valType>
|
|
valType pitch(tquat<valType> const & q)
|
|
{
|
|
return ::atan2(valType(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)* valType(RAD2DEG);
|
|
}
|
|
template <typename valType>
|
|
valType yaw(tquat<valType> const & q)
|
|
{
|
|
return ::asin(valType(-2) * (q.x * q.z - q.w * q.y)) * valType(RAD2DEG);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> eulerAngles(tquat<T> const & x)
|
|
{
|
|
return tvec3<T>(pitch(x), yaw(x), roll(x));
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
tmat3x3<T> mat3_cast(const tquat<T>& q)
|
|
{
|
|
|
|
return tmat3x3<T>
|
|
(
|
|
1 - 2 * q.y * q.y - 2 * q.z * q.z, 2 * q.x * q.y + 2 * q.w * q.z, 2 * q.x * q.z - 2 * q.w * q.y,
|
|
2 * q.x * q.y - 2 * q.w * q.z, 1 - 2 * q.x * q.x - 2 * q.z * q.z, 2 * q.y * q.z + 2 * q.w * q.x,
|
|
2 * q.x * q.z + 2 * q.w * q.y, 2 * q.y * q.z - 2 * q.w * q.x, 1 - 2 * q.x * q.x - 2 * q.y * q.y
|
|
);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> mat4_cast(tquat<T> const & q)
|
|
{
|
|
return tmat4x4<T>(mat3_cast(q));
|
|
}
|
|
template <typename T>
|
|
tquat<T> quat_cast(tmat3x3<T> const & m)
|
|
{
|
|
typename tquat<T>::value_type fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2];
|
|
typename tquat<T>::value_type fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2];
|
|
typename tquat<T>::value_type fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1];
|
|
typename tquat<T>::value_type fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2];
|
|
|
|
int biggestIndex = 0;
|
|
typename tquat<T>::value_type fourBiggestSquaredMinus1 = fourWSquaredMinus1;
|
|
if(fourXSquaredMinus1 > fourBiggestSquaredMinus1)
|
|
{
|
|
fourBiggestSquaredMinus1 = fourXSquaredMinus1;
|
|
biggestIndex = 1;
|
|
}
|
|
if(fourYSquaredMinus1 > fourBiggestSquaredMinus1)
|
|
{
|
|
fourBiggestSquaredMinus1 = fourYSquaredMinus1;
|
|
biggestIndex = 2;
|
|
}
|
|
if(fourZSquaredMinus1 > fourBiggestSquaredMinus1)
|
|
{
|
|
fourBiggestSquaredMinus1 = fourZSquaredMinus1;
|
|
biggestIndex = 3;
|
|
}
|
|
|
|
typename tquat<T>::value_type biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5);
|
|
typename tquat<T>::value_type mult = T(0.25) / biggestVal;
|
|
|
|
tquat<T> res;
|
|
switch(biggestIndex)
|
|
{
|
|
case 0:
|
|
res.w = biggestVal;
|
|
res.x = (m[1][2] - m[2][1]) * mult;
|
|
res.y = (m[2][0] - m[0][2]) * mult;
|
|
res.z = (m[0][1] - m[1][0]) * mult;
|
|
break;
|
|
case 1:
|
|
res.w = (m[1][2] - m[2][1]) * mult;
|
|
res.x = biggestVal;
|
|
res.y = (m[0][1] + m[1][0]) * mult;
|
|
res.z = (m[2][0] + m[0][2]) * mult;
|
|
break;
|
|
case 2:
|
|
res.w = (m[2][0] - m[0][2]) * mult;
|
|
res.x = (m[0][1] + m[1][0]) * mult;
|
|
res.y = biggestVal;
|
|
res.z = (m[1][2] + m[2][1]) * mult;
|
|
break;
|
|
case 3:
|
|
res.w = (m[0][1] - m[1][0]) * mult;
|
|
res.x = (m[2][0] + m[0][2]) * mult;
|
|
res.y = (m[1][2] + m[2][1]) * mult;
|
|
res.z = biggestVal;
|
|
break;
|
|
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
template <typename T>
|
|
tquat<T> quat_cast(tmat4x4<T> const & m4)
|
|
{
|
|
return quat_cast(tmat3x3<T>(m4[0][0],m4[0][1],m4[0][2],
|
|
m4[1][0],m4[1][1],m4[1][2],
|
|
m4[2][0],m4[2][1],m4[2][2]));
|
|
}
|
|
|
|
template <typename T>
|
|
T angle(tquat<T> const & x)
|
|
{
|
|
return acos(x.w) * T(2) * T(RAD2DEG);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> axis(tquat<T> const & x)
|
|
{
|
|
T tmp1 = T(1) - x.w * x.w;
|
|
if(tmp1 <= T(0))
|
|
{
|
|
return tvec3<T>(0, 0, 1);
|
|
}
|
|
T tmp2 = T(1) / sqrt(tmp1);
|
|
|
|
return tvec3<T>(x.x * tmp2, x.y * tmp2, x.z * tmp2);
|
|
}
|
|
|
|
|
|
|
|
template <typename valType>
|
|
tquat<valType> angleAxis(valType angle, tvec3<valType> const & axis)
|
|
{
|
|
tquat<valType> result;
|
|
|
|
valType a = (valType)(valType(DEG2RAD(angle)));
|
|
valType s = sin(a * valType(0.5));
|
|
|
|
result.w = cos(a * valType(0.5));
|
|
result.x = axis.x * s;
|
|
result.y = axis.y * s;
|
|
result.z = axis.z * s;
|
|
return result;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
tmat4x4<T> translate(tmat4x4<T> const & m,tvec3<T> const & v)
|
|
{
|
|
tmat4x4<T> res(m);
|
|
res[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3];
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotate
|
|
(
|
|
tmat4x4<T> const & m,
|
|
T const & angle,
|
|
tvec3<T> const & v
|
|
)
|
|
{
|
|
|
|
T a = DEG2RAD(angle);
|
|
T c = cos(a);
|
|
T s = sin(a);
|
|
|
|
tvec3<T> axis = normalize(v);
|
|
|
|
tvec3<T> temp = (T(1) - c) * axis;
|
|
|
|
tmat4x4<T> res;
|
|
res[0][0] = c + temp[0] * axis[0];
|
|
res[0][1] = 0 + temp[0] * axis[1] + s * axis[2];
|
|
res[0][2] = 0 + temp[0] * axis[2] - s * axis[1];
|
|
|
|
res[1][0] = 0 + temp[1] * axis[0] - s * axis[2];
|
|
res[1][1] = c + temp[1] * axis[1];
|
|
res[1][2] = 0 + temp[1] * axis[2] + s * axis[0];
|
|
|
|
res[2][0] = 0 + temp[2] * axis[0] + s * axis[1];
|
|
res[2][1] = 0 + temp[2] * axis[1] - s * axis[0];
|
|
res[2][2] = c + temp[2] * axis[2];
|
|
|
|
tmat4x4<T> rot;
|
|
|
|
rot[0] = m[0] * res[0][0] + m[1] * res[0][1] + m[2] * res[0][2];
|
|
rot[1] = m[0] * res[1][0] + m[1] * res[1][1] + m[2] * res[1][2];
|
|
rot[2] = m[0] * res[2][0] + m[1] * res[2][1] + m[2] * res[2][2];
|
|
rot[3] = m[3];
|
|
return rot;
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> scale(tmat4x4<T> const & m,tvec3<T> const & v)
|
|
{
|
|
tmat4x4<T> res;
|
|
res[0] = m[0] * v[0];
|
|
res[1] = m[1] * v[1];
|
|
res[2] = m[2] * v[2];
|
|
res[3] = m[3];
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> rotate_slow
|
|
(
|
|
tmat4x4<T> const & m,
|
|
T const & angle,
|
|
tvec3<T> const & v
|
|
)
|
|
{
|
|
|
|
T const a = DEG2RAD(angle);
|
|
T c = cos(a);
|
|
T s = sin(a);
|
|
tmat4x4<T> res;
|
|
|
|
tvec3<T> axis = normalize(v);
|
|
|
|
res[0][0] = c + (1 - c) * axis.x * axis.x;
|
|
res[0][1] = (1 - c) * axis.x * axis.y + s * axis.z;
|
|
res[0][2] = (1 - c) * axis.x * axis.z - s * axis.y;
|
|
res[0][3] = 0;
|
|
|
|
res[1][0] = (1 - c) * axis.y * axis.x - s * axis.z;
|
|
res[1][1] = c + (1 - c) * axis.y * axis.y;
|
|
res[1][2] = (1 - c) * axis.y * axis.z + s * axis.x;
|
|
res[1][3] = 0;
|
|
|
|
res[2][0] = (1 - c) * axis.z * axis.x + s * axis.y;
|
|
res[2][1] = (1 - c) * axis.z * axis.y - s * axis.x;
|
|
res[2][2] = c + (1 - c) * axis.z * axis.z;
|
|
res[2][3] = 0;
|
|
|
|
res[3] = tvec4<T>(0, 0, 0, 1);
|
|
return m * res;
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> scale_slow(tmat4x4<T> const & m,tvec3<T> const & v)
|
|
{
|
|
tmat4x4<T> res(T(1));
|
|
res[0][0] = v.x;
|
|
res[1][1] = v.y;
|
|
res[2][2] = v.z;
|
|
|
|
return m * res;
|
|
}
|
|
|
|
template <typename valType>
|
|
tmat4x4<valType> ortho
|
|
(
|
|
valType left,
|
|
valType right,
|
|
valType bottom,
|
|
valType top,
|
|
valType zNear,
|
|
valType zFar
|
|
)
|
|
{
|
|
tmat4x4<valType> res(1);
|
|
res[0][0] = valType(2) / (right - left);
|
|
res[1][1] = valType(2) / (top - bottom);
|
|
res[2][2] = - valType(2) / (zFar - zNear);
|
|
res[3][0] = - (right + left) / (right - left);
|
|
res[3][1] = - (top + bottom) / (top - bottom);
|
|
res[3][2] = - (zFar + zNear) / (zFar - zNear);
|
|
return res;
|
|
}
|
|
|
|
template <typename valType>
|
|
tmat4x4<valType> frustum
|
|
(
|
|
valType left,
|
|
valType right,
|
|
valType bottom,
|
|
valType top,
|
|
valType nearVal,
|
|
valType farVal
|
|
)
|
|
{
|
|
tmat4x4<valType> res(0);
|
|
res[0][0] = (valType(2) * nearVal) / (right - left);
|
|
res[1][1] = (valType(2) * nearVal) / (top - bottom);
|
|
res[2][0] = (right + left) / (right - left);
|
|
res[2][1] = (top + bottom) / (top - bottom);
|
|
res[2][2] = -(farVal + nearVal) / (farVal - nearVal);
|
|
res[2][3] = valType(-1);
|
|
res[3][2] = -(valType(2) * farVal * nearVal) / (farVal - nearVal);
|
|
return res;
|
|
}
|
|
|
|
template <typename valType>
|
|
tmat4x4<valType> perspective(valType fovy, valType aspect, valType zNear, valType zFar)
|
|
{
|
|
valType range = tan(fovy * valType(DEG2RAD(0.5))) * zNear;
|
|
valType left = -range * aspect;
|
|
valType right = range * aspect;
|
|
valType bottom = -range;
|
|
valType top = range;
|
|
|
|
tmat4x4<valType> res(valType(0));
|
|
res[0][0] = (valType(2) * zNear) / (right - left);
|
|
res[1][1] = (valType(2) * zNear) / (top - bottom);
|
|
res[2][2] = - (zFar + zNear) / (zFar - zNear);
|
|
res[2][3] = - valType(1);
|
|
res[3][2] = - (valType(2) * zFar * zNear) / (zFar - zNear);
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> project
|
|
(
|
|
tvec3<T> const & obj,
|
|
tmat4x4<T> const & model,
|
|
tmat4x4<T> const & proj,
|
|
tvec4<T> const & viewport
|
|
)
|
|
{
|
|
tvec4<T> tmp = tvec4<T>(obj.x, obj.y,obj.z,T(1));
|
|
tmp = model * tmp;
|
|
tmp = proj * tmp;
|
|
|
|
tmp /= tmp.w;
|
|
tmp = tmp * T(0.5) + T(0.5);
|
|
tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
|
|
tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
|
|
|
|
return tvec3<T>(tmp.x,tmp.y,tmp.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tvec3<T> unProject
|
|
(
|
|
tvec3<T> const & win,
|
|
tmat4x4<T> const & model,
|
|
tmat4x4<T> const & proj,
|
|
tvec4<T> const & viewport
|
|
)
|
|
{
|
|
tmat4x4<T> inverses = (proj * model).inverse();
|
|
|
|
tvec4<T> tmp = tvec4<T>(win.x,win.y,win.z, T(1));
|
|
tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
|
|
tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
|
|
tmp = tmp * T(2) - T(1);
|
|
|
|
tvec4<T> obj = inverses * tmp;
|
|
obj /= obj.w;
|
|
|
|
return tvec3<T>(obj.x,obj.y,obj.z);
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> pickMatrix
|
|
(
|
|
tvec2<T> const & center,
|
|
tvec2<T> const & delta,
|
|
tvec4<T> const & viewport
|
|
)
|
|
{
|
|
assert(delta.x > T(0) && delta.y > T(0));
|
|
tmat4x4<T> res(1.0f);
|
|
|
|
if(!(delta.x > T(0) && delta.y > T(0)))
|
|
{
|
|
return res;
|
|
}
|
|
|
|
tvec3<T> Temp
|
|
(
|
|
(T(viewport[2]) - T(2) * (center.x - T(viewport[0]))) / delta.x,
|
|
(T(viewport[3]) - T(2) * (center.y - T(viewport[1]))) / delta.y,
|
|
T(0)
|
|
);
|
|
res = translate(res, Temp);
|
|
return scale(res, tvec3<T>(T(viewport[2]) / delta.x, T(viewport[3]) / delta.y, T(1)));
|
|
}
|
|
|
|
template <typename T>
|
|
tmat4x4<T> lookAt
|
|
(
|
|
tvec3<T> const & eye,
|
|
tvec3<T> const & center,
|
|
tvec3<T> const & up
|
|
)
|
|
{
|
|
tvec3<T> f = normalize(center - eye);
|
|
tvec3<T> u = normalize(up);
|
|
tvec3<T> s = normalize(cross(f, u));
|
|
u = cross(s, f);
|
|
|
|
tmat4x4<T> res(1);
|
|
res[0][0] = s.x;
|
|
res[1][0] = s.y;
|
|
res[2][0] = s.z;
|
|
res[0][1] = u.x;
|
|
res[1][1] = u.y;
|
|
res[2][1] = u.z;
|
|
res[0][2] = -f.x;
|
|
res[1][2] = -f.y;
|
|
res[2][2] = -f.z;
|
|
res[3][0] = -dot(s, eye);
|
|
res[3][1] = -dot(u, eye);
|
|
res[3][2] = dot(f, eye);
|
|
return res;
|
|
}
|
|
|
|
template<typename T>
|
|
class AxisAlignedBox2D
|
|
{
|
|
public:
|
|
enum Extent
|
|
{
|
|
EXTENT_NULL,
|
|
EXTENT_FINITE,
|
|
EXTENT_INFINITE
|
|
};
|
|
public:
|
|
tvec2<T> _minimum;
|
|
tvec2<T> _maximum;
|
|
Extent _extent;
|
|
public:
|
|
/*
|
|
1-----2
|
|
/| /|
|
|
/ | / |
|
|
5-----4 |
|
|
| 0--|--3
|
|
| / | /
|
|
|/ |/
|
|
6-----7
|
|
*/
|
|
typedef enum
|
|
{
|
|
FAR_LEFT_BOTTOM = 0,
|
|
FAR_LEFT_TOP = 1,
|
|
FAR_RIGHT_TOP = 2,
|
|
FAR_RIGHT_BOTTOM = 3,
|
|
NEAR_RIGHT_BOTTOM = 7,
|
|
NEAR_LEFT_BOTTOM = 6,
|
|
NEAR_LEFT_TOP = 5,
|
|
NEAR_RIGHT_TOP = 4
|
|
} CornerEnum;
|
|
|
|
AxisAlignedBox2D()
|
|
{
|
|
_minimum = tvec2<T>( T(-0.5), T(-0.5));
|
|
_maximum = tvec2<T>( T(0.5), T(0.5));
|
|
_extent = EXTENT_NULL;
|
|
}
|
|
AxisAlignedBox2D(const AxisAlignedBox2D & rkBox)
|
|
{
|
|
setExtents( rkBox._minimum, rkBox._maximum );
|
|
_extent = rkBox._extent;
|
|
}
|
|
|
|
AxisAlignedBox2D( const tvec2<T>& min, const tvec2<T>& max )
|
|
{
|
|
setExtents( min, max );
|
|
}
|
|
|
|
AxisAlignedBox2D(
|
|
T mx, T my,
|
|
T Mx, T My
|
|
)
|
|
{
|
|
setExtents( tvec2<T>(mx, my), tvec2<T>(Mx, My));
|
|
}
|
|
|
|
AxisAlignedBox2D<T>& operator=(const AxisAlignedBox2D<T>& right)
|
|
{
|
|
setExtents(right._minimum, right._maximum);
|
|
return *this;
|
|
}
|
|
|
|
~AxisAlignedBox2D()
|
|
{
|
|
}
|
|
/**
|
|
* Gets the minimum corner of the box.
|
|
*/
|
|
const tvec2<T>& getMinimum(void) const
|
|
{
|
|
return _minimum;
|
|
}
|
|
|
|
/**
|
|
* Gets a modifiable version of the minimum
|
|
* corner of the box.
|
|
*/
|
|
tvec2<T>& getMinimum(void)
|
|
{
|
|
return _minimum;
|
|
}
|
|
|
|
void setMinimum( const tvec2<T>& vec )
|
|
{
|
|
_minimum = vec;
|
|
}
|
|
void setMinimum( T x,T y )
|
|
{
|
|
_minimum = tvec2<T>(x,y);
|
|
}
|
|
/**
|
|
* Gets the maximum corner of the box.
|
|
*/
|
|
const tvec2<T>& getMaximum(void) const
|
|
{
|
|
return _maximum;
|
|
}
|
|
/**
|
|
* Gets a modifiable version of the maximum
|
|
* corner of the box.
|
|
*/
|
|
tvec2<T>& getMaximum(void)
|
|
{
|
|
return _maximum;
|
|
}
|
|
|
|
|
|
/**
|
|
* Sets the maximum corner of the box.
|
|
*/
|
|
void setMaximum( const tvec2<T>& vec )
|
|
{
|
|
_maximum = vec;
|
|
}
|
|
|
|
void setMaximum( T x, T y )
|
|
{
|
|
_maximum.x = x;
|
|
_maximum.y = y;
|
|
}
|
|
|
|
/**
|
|
* Sets both minimum and maximum extents at once.
|
|
*/
|
|
void setExtents( const tvec2<T>& min, const tvec2<T>& max )
|
|
{
|
|
_minimum = min;
|
|
_maximum = max;
|
|
_extent = EXTENT_FINITE;
|
|
}
|
|
|
|
void setExtents(
|
|
T mx, T my,
|
|
T Mx, T My
|
|
)
|
|
{
|
|
_minimum.x = mx;
|
|
_minimum.y = my;
|
|
|
|
_maximum.x = Mx;
|
|
_maximum.y = My;
|
|
_extent = EXTENT_FINITE;
|
|
}
|
|
inline bool intersects(const AxisAlignedBox2D& b2) const
|
|
{
|
|
if (_maximum.x < b2._minimum.x)
|
|
return false;
|
|
if (_maximum.y < b2._minimum.y)
|
|
return false;
|
|
|
|
if (_minimum.x > b2._maximum.x)
|
|
return false;
|
|
if (_minimum.y > b2._maximum.y)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
inline AxisAlignedBox2D<T> intersection(const AxisAlignedBox2D<T>& b2) const
|
|
{
|
|
tvec2<T> intMin = _minimum;
|
|
tvec2<T> intMax = _maximum;
|
|
|
|
intMin.makeCeil(b2.getMinimum());
|
|
intMax.makeFloor(b2.getMaximum());
|
|
|
|
if (intMin.x < intMax.x &&
|
|
intMin.y < intMax.y)
|
|
{
|
|
return AxisAlignedBox2D<T>(intMin, intMax);
|
|
}
|
|
|
|
return AxisAlignedBox2D<T>();
|
|
}
|
|
inline void setNull()
|
|
{
|
|
_extent = EXTENT_NULL;
|
|
}
|
|
|
|
inline bool isNull(void) const
|
|
{
|
|
return (_extent == EXTENT_NULL);
|
|
}
|
|
|
|
bool isFinite(void) const
|
|
{
|
|
return (_extent == EXTENT_FINITE);
|
|
}
|
|
|
|
inline void setInfinite()
|
|
{
|
|
_extent = EXTENT_INFINITE;
|
|
}
|
|
inline bool isInfinite(void) const
|
|
{
|
|
return (_extent == EXTENT_INFINITE);
|
|
}
|
|
|
|
|
|
inline bool intersects(const tvec2<T>& v) const
|
|
{
|
|
return( v.x >= _minimum.x && v.x <= _maximum.x &&
|
|
v.y >= _minimum.y && v.y <= _maximum.y );
|
|
}
|
|
|
|
|
|
inline tvec2<T> getCenter(void) const
|
|
{
|
|
return tvec2<T>(
|
|
(_maximum.x + _minimum.x) * T(0.5f),
|
|
(_maximum.y + _minimum.y) * T(0.5f));
|
|
}
|
|
/**
|
|
* Gets the size of the box
|
|
*/
|
|
inline tvec2<T> getSize(void) const
|
|
{
|
|
return _maximum - _minimum;
|
|
}
|
|
|
|
inline tvec2<T> getHalfSize(void) const
|
|
{
|
|
return (_maximum - _minimum) * T(0.5);
|
|
}
|
|
|
|
inline bool contains(const tvec2<T>& v) const
|
|
{
|
|
return _minimum.x <= v.x && v.x <= _maximum.x &&
|
|
_minimum.y <= v.y && v.y <= _maximum.y;
|
|
}
|
|
|
|
inline bool contains(const AxisAlignedBox2D& other) const
|
|
{
|
|
return this->_minimum.x <= other._minimum.x &&
|
|
this->_minimum.y <= other._minimum.y &&
|
|
other._maximum.x <= this->_maximum.x &&
|
|
other._maximum.y <= this->_maximum.y;
|
|
}
|
|
inline bool operator== (const AxisAlignedBox2D& right) const
|
|
{
|
|
return this->_minimum == right._minimum &&
|
|
this->_maximum == right._maximum;
|
|
}
|
|
inline bool operator!= (const AxisAlignedBox2D& right) const
|
|
{
|
|
return !(*this == right);
|
|
}
|
|
|
|
inline void merge(tvec2<T> point)
|
|
{
|
|
if (_minimum.x > point.x)
|
|
{
|
|
_minimum.x = point.x;
|
|
}
|
|
|
|
if (_minimum.y > point.y)
|
|
{
|
|
_minimum.y = point.y;
|
|
}
|
|
if (_maximum.x < point.x)
|
|
{
|
|
_maximum.x = point.x;
|
|
}
|
|
if (_maximum.y < point.y)
|
|
{
|
|
_maximum.y = point.y;
|
|
}
|
|
}
|
|
|
|
inline void merge(AxisAlignedBox2D<T> other)
|
|
{
|
|
_maximum.makeCeil(other._maximum);
|
|
_minimum.makeFloor(other._minimum);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
class AxisAlignedBox
|
|
{
|
|
public:
|
|
enum Extent
|
|
{
|
|
EXTENT_NULL,
|
|
EXTENT_FINITE,
|
|
EXTENT_INFINITE
|
|
};
|
|
public:
|
|
tvec3<T> _minimum;
|
|
tvec3<T> _maximum;
|
|
Extent _extent;
|
|
public:
|
|
/*
|
|
1-----2
|
|
/| /|
|
|
/ | / |
|
|
5-----4 |
|
|
| 0--|--3
|
|
| / | /
|
|
|/ |/
|
|
6-----7
|
|
*/
|
|
typedef enum
|
|
{
|
|
FAR_LEFT_BOTTOM = 0,
|
|
FAR_LEFT_TOP = 1,
|
|
FAR_RIGHT_TOP = 2,
|
|
FAR_RIGHT_BOTTOM = 3,
|
|
NEAR_RIGHT_BOTTOM = 7,
|
|
NEAR_LEFT_BOTTOM = 6,
|
|
NEAR_LEFT_TOP = 5,
|
|
NEAR_RIGHT_TOP = 4
|
|
} CornerEnum;
|
|
|
|
AxisAlignedBox()
|
|
{
|
|
_minimum = tvec3<T>( T(-0.5), T(-0.5), T(-0.5) );
|
|
_maximum = tvec3<T>( T(0.5), T(0.5), T(0.5) );
|
|
_extent = EXTENT_NULL;
|
|
}
|
|
AxisAlignedBox(const AxisAlignedBox & rkBox)
|
|
{
|
|
setExtents( rkBox._minimum, rkBox._maximum );
|
|
_extent = rkBox._extent;
|
|
}
|
|
|
|
AxisAlignedBox( const tvec3<T>& min, const tvec3<T>& max )
|
|
{
|
|
setExtents( min, max );
|
|
}
|
|
|
|
AxisAlignedBox(
|
|
T mx, T my, T mz,
|
|
T Mx, T My, T Mz
|
|
)
|
|
{
|
|
setExtents( mx, my, mz, Mx, My, Mz );
|
|
}
|
|
|
|
AxisAlignedBox<T>& operator=(const AxisAlignedBox<T>& right)
|
|
{
|
|
setExtents(right._minimum, right._maximum);
|
|
return *this;
|
|
}
|
|
|
|
~AxisAlignedBox()
|
|
{
|
|
}
|
|
/**
|
|
* Gets the minimum corner of the box.
|
|
*/
|
|
const tvec3<T>& getMinimum(void) const
|
|
{
|
|
return _minimum;
|
|
}
|
|
|
|
/**
|
|
* Gets a modifiable version of the minimum
|
|
* corner of the box.
|
|
*/
|
|
tvec3<T>& getMinimum(void)
|
|
{
|
|
return _minimum;
|
|
}
|
|
|
|
void setMinimum(const tvec3<T>& mins)
|
|
{
|
|
_minimum = mins;
|
|
}
|
|
void setMinimum(T x,T y, T z)
|
|
{
|
|
_minimum = tvec3<T>(x,y,z);
|
|
}
|
|
/**
|
|
* Gets the maximum corner of the box.
|
|
*/
|
|
const tvec3<T>& getMaximum(void) const
|
|
{
|
|
return _maximum;
|
|
}
|
|
/**
|
|
* Gets a modifiable version of the maximum
|
|
* corner of the box.
|
|
*/
|
|
tvec3<T>& getMaximum(void)
|
|
{
|
|
return _maximum;
|
|
}
|
|
/**
|
|
* Sets the maximum corner of the box.
|
|
*/
|
|
void setMaximum( const tvec3<T>& vec )
|
|
{
|
|
_maximum = vec;
|
|
}
|
|
|
|
void setMaximum( T x, T y, T z )
|
|
{
|
|
_maximum.x = x;
|
|
_maximum.y = y;
|
|
_maximum.z = z;
|
|
}
|
|
|
|
/**
|
|
* Changes one of the components of the maximum corner of the box
|
|
* used to resize only one dimension of the box
|
|
*/
|
|
void setMaximumX( T x )
|
|
{
|
|
_maximum.x = x;
|
|
}
|
|
|
|
void setMaximumY( T y )
|
|
{
|
|
_maximum.y = y;
|
|
}
|
|
|
|
void setMaximumZ( T z )
|
|
{
|
|
_maximum.z = z;
|
|
}
|
|
|
|
/**
|
|
* Sets both minimum and maximum extents at once.
|
|
*/
|
|
void setExtents( const tvec3<T>& min, const tvec3<T>& max )
|
|
{
|
|
_minimum = min;
|
|
_maximum = max;
|
|
_extent = EXTENT_FINITE;
|
|
}
|
|
|
|
void setExtents(
|
|
T mx, T my, T mz,
|
|
T Mx, T My, T Mz )
|
|
{
|
|
_minimum.x = mx;
|
|
_minimum.y = my;
|
|
_minimum.z = mz;
|
|
|
|
_maximum.x = Mx;
|
|
_maximum.y = My;
|
|
_maximum.z = Mz;
|
|
_extent = EXTENT_FINITE;
|
|
|
|
}
|
|
|
|
/** Returns a pointer to an array of 8 corner points, useful for
|
|
collision vs. non-aligned objects.
|
|
@remarks
|
|
If the order of these corners is important, they are as
|
|
follows: The 4 points of the minimum Z face (note that
|
|
because Ogre uses right-handed coordinates, the minimum Z is
|
|
at the 'back' of the box) starting with the minimum point of
|
|
all, then anticlockwise around this face (if you are looking
|
|
onto the face from outside the box). Then the 4 points of the
|
|
maximum Z face, starting with maximum point of all, then
|
|
anticlockwise around this face (looking onto the face from
|
|
outside the box). Like this:
|
|
<pre>
|
|
1-----2
|
|
/| /|
|
|
/ | / |
|
|
5-----4 |
|
|
| 0--|--3
|
|
| / | /
|
|
|/ |/
|
|
6-----7
|
|
</pre>
|
|
@remarks as this implementation uses a static member, make sure to use your own copy !
|
|
*/
|
|
void getAllCorners(tvec3<T> mpCorners[8] ) const
|
|
{
|
|
mpCorners[0] = _minimum;
|
|
mpCorners[1].x = _minimum.x; mpCorners[1].y = _maximum.y; mpCorners[1].z = _minimum.z;
|
|
mpCorners[2].x = _maximum.x; mpCorners[2].y = _maximum.y; mpCorners[2].z = _minimum.z;
|
|
mpCorners[3].x = _maximum.x; mpCorners[3].y = _minimum.y; mpCorners[3].z = _minimum.z;
|
|
|
|
mpCorners[4] = _maximum;
|
|
mpCorners[5].x = _minimum.x; mpCorners[5].y = _maximum.y; mpCorners[5].z = _maximum.z;
|
|
mpCorners[6].x = _minimum.x; mpCorners[6].y = _minimum.y; mpCorners[6].z = _maximum.z;
|
|
mpCorners[7].x = _maximum.x; mpCorners[7].y = _minimum.y; mpCorners[7].z = _maximum.z;
|
|
}
|
|
|
|
/**
|
|
* gets the position of one of the corners
|
|
*/
|
|
tvec3<T> getCorner(CornerEnum cornerToGet) const
|
|
{
|
|
switch(cornerToGet)
|
|
{
|
|
case FAR_LEFT_BOTTOM:
|
|
return _minimum;
|
|
case FAR_LEFT_TOP:
|
|
return tvec3<T>(_minimum.x, _maximum.y, _minimum.z);
|
|
case FAR_RIGHT_TOP:
|
|
return tvec3<T>(_maximum.x, _maximum.y, _minimum.z);
|
|
case FAR_RIGHT_BOTTOM:
|
|
return tvec3<T>(_maximum.x, _minimum.y, _minimum.z);
|
|
case NEAR_RIGHT_BOTTOM:
|
|
return tvec3<T>(_maximum.x, _minimum.y, _maximum.z);
|
|
case NEAR_LEFT_BOTTOM:
|
|
return tvec3<T>(_minimum.x, _minimum.y, _maximum.z);
|
|
case NEAR_LEFT_TOP:
|
|
return tvec3<T>(_minimum.x, _maximum.y, _maximum.z);
|
|
case NEAR_RIGHT_TOP:
|
|
return _maximum;
|
|
default:
|
|
return tvec3<T>();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Merges the passed in box into the current box. The result is the
|
|
* box which encompasses both.
|
|
*/
|
|
void merge( const AxisAlignedBox<T>& right )
|
|
{
|
|
|
|
if ((right._extent == EXTENT_NULL) || (_extent == EXTENT_INFINITE))
|
|
{
|
|
return;
|
|
}
|
|
else if (right._extent == EXTENT_INFINITE)
|
|
{
|
|
_extent = EXTENT_INFINITE;
|
|
}
|
|
else if (_extent == EXTENT_NULL)
|
|
{
|
|
setExtents(right._minimum, right._maximum);
|
|
}
|
|
else
|
|
{
|
|
//! merge
|
|
tvec3<T> min = _minimum;
|
|
tvec3<T> max = _maximum;
|
|
max.makeCeil(right._maximum);
|
|
min.makeFloor(right._minimum);
|
|
setExtents(min, max);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Extends the box to encompass the specified point (if needed).
|
|
*/
|
|
void merge( const tvec3<T>& point )
|
|
{
|
|
switch (_extent)
|
|
{
|
|
case EXTENT_NULL: // if null, use this point
|
|
setExtents(point, point);
|
|
return;
|
|
|
|
case EXTENT_FINITE:
|
|
_maximum.makeCeil(point);
|
|
_minimum.makeFloor(point);
|
|
return;
|
|
|
|
case EXTENT_INFINITE:
|
|
return;
|
|
}
|
|
}
|
|
void transform( const tmat4x4<T>& matrix )
|
|
{
|
|
tvec3<T> oldMin;
|
|
tvec3<T> oldMax;
|
|
tvec3<T> currentCorner;
|
|
|
|
oldMin = _minimum;
|
|
oldMax = _maximum;
|
|
|
|
|
|
// We sequentially compute the corners in the following order :
|
|
// 0, 6, 5, 1, 2, 4 ,7 , 3
|
|
// This sequence allows us to only change one member at a time to get at all corners.
|
|
|
|
// For each one, we transform it using the matrix
|
|
// Which gives the resulting point and merge the resulting point.
|
|
|
|
currentCorner = oldMin;
|
|
tvec3<T> vVert = currentCorner * matrix;
|
|
setExtents(vVert,vVert);
|
|
|
|
// First corner
|
|
// min min min
|
|
currentCorner = oldMin;
|
|
merge( currentCorner * matrix );
|
|
|
|
// min,min,max
|
|
currentCorner.z = oldMax.z;
|
|
merge( currentCorner * matrix );
|
|
|
|
// min max max
|
|
currentCorner.y = oldMax.y;
|
|
merge( currentCorner * matrix );
|
|
|
|
// min max min
|
|
currentCorner.z = oldMin.z;
|
|
merge( currentCorner * matrix );
|
|
|
|
// max max min
|
|
currentCorner.x = oldMax.x;
|
|
merge( currentCorner * matrix );
|
|
|
|
// max max max
|
|
currentCorner.z = oldMax.z;
|
|
merge( currentCorner * matrix );
|
|
|
|
// max min max
|
|
currentCorner.y = oldMin.y;
|
|
merge( currentCorner * matrix);
|
|
|
|
// max min min
|
|
currentCorner.z = oldMin.z;
|
|
merge( currentCorner * matrix);
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not this box intersects another.
|
|
*/
|
|
bool intersects(const AxisAlignedBox& b2) const
|
|
{
|
|
if (_maximum.x < b2._minimum.x)
|
|
return false;
|
|
if (_maximum.y < b2._minimum.y)
|
|
return false;
|
|
if (_maximum.z < b2._minimum.z)
|
|
return false;
|
|
|
|
if (_minimum.x > b2._maximum.x)
|
|
return false;
|
|
if (_minimum.y > b2._maximum.y)
|
|
return false;
|
|
if (_minimum.z > b2._maximum.z)
|
|
return false;
|
|
return true;
|
|
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not this box intersects another.
|
|
*/
|
|
bool intersectsNoZ(const AxisAlignedBox& b2) const
|
|
{
|
|
if (_maximum.x < b2._minimum.x)
|
|
return false;
|
|
if (_maximum.y < b2._minimum.y)
|
|
return false;
|
|
|
|
if (_minimum.x > b2._maximum.x)
|
|
return false;
|
|
if (_minimum.y > b2._maximum.y)
|
|
return false;
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
AxisAlignedBox<T> intersection(const AxisAlignedBox<T>& b2) const
|
|
{
|
|
tvec3<T> intMin = _minimum;
|
|
tvec3<T> intMax = _maximum;
|
|
|
|
intMin.makeCeil(b2.getMinimum());
|
|
intMax.makeFloor(b2.getMaximum());
|
|
|
|
if (intMin.x < intMax.x &&
|
|
intMin.y < intMax.y &&
|
|
intMin.z < intMax.z)
|
|
{
|
|
return AxisAlignedBox<T>(intMin, intMax);
|
|
}
|
|
|
|
return AxisAlignedBox<T>();
|
|
}
|
|
void setNull()
|
|
{
|
|
_extent = EXTENT_NULL;
|
|
}
|
|
|
|
bool isNull(void) const
|
|
{
|
|
return (_extent == EXTENT_NULL);
|
|
}
|
|
|
|
bool isFinite(void) const
|
|
{
|
|
return (_extent == EXTENT_FINITE);
|
|
}
|
|
|
|
void setInfinite()
|
|
{
|
|
_extent = EXTENT_INFINITE;
|
|
}
|
|
bool isInfinite(void) const
|
|
{
|
|
return (_extent == EXTENT_INFINITE);
|
|
}
|
|
|
|
void scale(const tvec3<T>& s)
|
|
{
|
|
tvec3<T> min = _minimum * s;
|
|
tvec3<T> max = _maximum * s;
|
|
setExtents(min, max);
|
|
}
|
|
|
|
bool intersects(const tvec3<T>& v) const
|
|
{
|
|
return( v.x >= _minimum.x && v.x <= _maximum.x &&
|
|
v.y >= _minimum.y && v.y <= _maximum.y &&
|
|
v.z >= _minimum.z && v.z <= _maximum.z);
|
|
}
|
|
|
|
bool intersects(const tvec2<T>& v) const
|
|
{
|
|
return( v.x >= _minimum.x && v.x <= _maximum.x &&
|
|
v.y >= _minimum.y && v.y <= _maximum.y );
|
|
}
|
|
|
|
tvec3<T> getCenter(void) const
|
|
{
|
|
return tvec3<T>(
|
|
(_maximum.x + _minimum.x) * T(0.5f),
|
|
(_maximum.y + _minimum.y) * T(0.5f),
|
|
(_maximum.z + _minimum.z) * T(0.5f)
|
|
);
|
|
}
|
|
/**
|
|
* Gets the size of the box
|
|
*/
|
|
tvec3<T> getSize(void) const
|
|
{
|
|
return _maximum - _minimum;
|
|
}
|
|
|
|
tvec3<T> getHalfSize(void) const
|
|
{
|
|
return (_maximum - _minimum) * T(0.5);
|
|
}
|
|
|
|
bool contains(const tvec3<T>& v) const
|
|
{
|
|
return _minimum.x <= v.x && v.x <= _maximum.x &&
|
|
_minimum.y <= v.y && v.y <= _maximum.y &&
|
|
_minimum.z <= v.z && v.z <= _maximum.z;
|
|
}
|
|
|
|
bool contains(const AxisAlignedBox& other) const
|
|
{
|
|
return this->_minimum.x <= other._minimum.x &&
|
|
this->_minimum.y <= other._minimum.y &&
|
|
this->_minimum.z <= other._minimum.z &&
|
|
other._maximum.x <= this->_maximum.x &&
|
|
other._maximum.y <= this->_maximum.y &&
|
|
other._maximum.z <= this->_maximum.z;
|
|
}
|
|
bool operator== (const AxisAlignedBox& right) const
|
|
{
|
|
return this->_minimum == right._minimum &&
|
|
this->_maximum == right._maximum;
|
|
}
|
|
bool operator!= (const AxisAlignedBox& right) const
|
|
{
|
|
return !(*this == right);
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
class tspline
|
|
{
|
|
public:
|
|
tspline()
|
|
{
|
|
mCoeffs[0][0] = 2;
|
|
mCoeffs[0][1] = -2;
|
|
mCoeffs[0][2] = 1;
|
|
mCoeffs[0][3] = 1;
|
|
mCoeffs[1][0] = -3;
|
|
mCoeffs[1][1] = 3;
|
|
mCoeffs[1][2] = -2;
|
|
mCoeffs[1][3] = -1;
|
|
mCoeffs[2][0] = 0;
|
|
mCoeffs[2][1] = 0;
|
|
mCoeffs[2][2] = 1;
|
|
mCoeffs[2][3] = 0;
|
|
mCoeffs[3][0] = 1;
|
|
mCoeffs[3][1] = 0;
|
|
mCoeffs[3][2] = 0;
|
|
mCoeffs[3][3] = 0;
|
|
|
|
mCoeffs = mCoeffs.transpose();
|
|
mAutoCalc = true;
|
|
}
|
|
~tspline(){};
|
|
|
|
void addPoint(const tvec3<T>& p)
|
|
{
|
|
mPoints.push_back(p);
|
|
if (mAutoCalc)
|
|
{
|
|
recalcTangents();
|
|
}
|
|
}
|
|
|
|
const tvec3<T>& getPoint(size_t index) const
|
|
{
|
|
assert (index < mPoints.size() && "Point index is out of bounds!!");
|
|
|
|
return mPoints[index];
|
|
}
|
|
tvec3<T>& getPoint(size_t index)
|
|
{
|
|
assert (index < mPoints.size() && "Point index is out of bounds!!");
|
|
|
|
return mPoints[index];
|
|
}
|
|
|
|
/**
|
|
* 获取点的数量
|
|
*/
|
|
size_t getNumPoints(void) const
|
|
{
|
|
return mPoints.size();
|
|
}
|
|
/**
|
|
* 清除所有的点数据
|
|
*/
|
|
void clear(void)
|
|
{
|
|
mPoints.clear();
|
|
mTangents.clear();
|
|
}
|
|
/**
|
|
* 更新点数据
|
|
*/
|
|
void updatePoint(size_t index, const tvec3<T>& value)
|
|
{
|
|
assert (index < mPoints.size() && "Point index is out of bounds!!");
|
|
|
|
mPoints[index] = value;
|
|
if (mAutoCalc)
|
|
{
|
|
recalcTangents();
|
|
}
|
|
}
|
|
/**
|
|
* 差值获取点数据
|
|
*/
|
|
tvec3<T> interpolate(T time) const
|
|
{
|
|
T fSeg = time * (mPoints.size() - 1);
|
|
unsigned segIdx = (unsigned)fSeg;
|
|
// Apportion t
|
|
time = fSeg - segIdx;
|
|
|
|
return interpolate(segIdx, time);
|
|
}
|
|
/**
|
|
* 根据索引差值
|
|
*/
|
|
tvec3<T> interpolate(size_t fromIndex, T t) const
|
|
{
|
|
// Bounds check
|
|
assert (fromIndex < mPoints.size() && "fromIndex out of bounds");
|
|
|
|
if ((fromIndex + 1) == mPoints.size())
|
|
{
|
|
// Duff request, cannot blend to nothing
|
|
// Just return source
|
|
return mPoints[fromIndex];
|
|
}
|
|
// Fast special cases
|
|
if (t == 0.0f)
|
|
{
|
|
return mPoints[fromIndex];
|
|
}
|
|
else if(t == 1.0f)
|
|
{
|
|
return mPoints[fromIndex + 1];
|
|
}
|
|
|
|
// float interpolation
|
|
// Form a vector of powers of t
|
|
T t2, t3;
|
|
t2 = t * t;
|
|
t3 = t2 * t;
|
|
tvec4<T> powers(t3, t2, t, 1);
|
|
|
|
const tvec3<T>& point1 = mPoints[fromIndex];
|
|
const tvec3<T>& point2 = mPoints[fromIndex+1];
|
|
const tvec3<T>& tan1 = mTangents[fromIndex];
|
|
const tvec3<T>& tan2 = mTangents[fromIndex+1];
|
|
tmat4x4<T> pt;
|
|
|
|
pt[0][0] = point1.x;
|
|
pt[0][1] = point1.y;
|
|
pt[0][2] = point1.z;
|
|
pt[0][3] = 1.0f;
|
|
pt[1][0] = point2.x;
|
|
pt[1][1] = point2.y;
|
|
pt[1][2] = point2.z;
|
|
pt[1][3] = 1.0f;
|
|
pt[2][0] = tan1.x;
|
|
pt[2][1] = tan1.y;
|
|
pt[2][2] = tan1.z;
|
|
pt[2][3] = 1.0f;
|
|
pt[3][0] = tan2.x;
|
|
pt[3][1] = tan2.y;
|
|
pt[3][2] = tan2.z;
|
|
pt[3][3] = 1.0f;
|
|
|
|
pt = pt.transpose();
|
|
|
|
tvec4<T> ret = powers * mCoeffs * pt;
|
|
|
|
return tvec3<T>(ret.x, ret.y, ret.z);
|
|
}
|
|
/**
|
|
* 自动计算标记
|
|
*/
|
|
void setAutoCalculate(bool autoCalc)
|
|
{
|
|
mAutoCalc = autoCalc;
|
|
}
|
|
/**
|
|
* 计算切线
|
|
*/
|
|
void recalcTangents(void)
|
|
{
|
|
size_t i, numPoints;
|
|
bool isClosed;
|
|
|
|
numPoints = mPoints.size();
|
|
if (numPoints < 2)
|
|
{
|
|
return;
|
|
}
|
|
if (mPoints[0] == mPoints[numPoints-1])
|
|
{
|
|
isClosed = true;
|
|
}
|
|
else
|
|
{
|
|
isClosed = false;
|
|
}
|
|
|
|
mTangents.resize(numPoints);
|
|
|
|
|
|
for(i = 0; i < numPoints; ++i)
|
|
{
|
|
if (i ==0)
|
|
{
|
|
// Special case start
|
|
if (isClosed)
|
|
{
|
|
// Use numPoints-2 since numPoints-1 is the last point and == [0]
|
|
mTangents[i] = 0.5f * (mPoints[1] - mPoints[numPoints-2]);
|
|
}
|
|
else
|
|
{
|
|
mTangents[i] = 0.5f * (mPoints[1] - mPoints[0]);
|
|
}
|
|
}
|
|
else if (i == numPoints-1)
|
|
{
|
|
if (isClosed)
|
|
{
|
|
mTangents[i] = mTangents[0];
|
|
}
|
|
else
|
|
{
|
|
mTangents[i] = 0.5f * (mPoints[i] - mPoints[i-1]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mTangents[i] = 0.5f * (mPoints[i+1] - mPoints[i-1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
bool mAutoCalc;
|
|
std::vector< tvec3<T> > mPoints;
|
|
std::vector< tvec3<T> > mTangents;
|
|
tmat4x4<T> mCoeffs;
|
|
};
|
|
|
|
|
|
|
|
|
|
template < typename T >
|
|
class tellipsoidModel
|
|
{
|
|
public:
|
|
tellipsoidModel(T radiusEquator = T(WGS_84_RADIUS_EQUATOR),T radiusPolar = T(WGS_84_RADIUS_POLAR))
|
|
{
|
|
_radiusEquator = radiusEquator;
|
|
_radiusPolar = radiusPolar;
|
|
T flattening = (_radiusEquator-_radiusPolar)/_radiusEquator;
|
|
_eccentricitySquared= T(2)*flattening - flattening*flattening;
|
|
}
|
|
|
|
~tellipsoidModel(void)
|
|
{
|
|
}
|
|
|
|
|
|
void convertLatLongHeightToXYZ(
|
|
T latitude,
|
|
T longitude,
|
|
T height,
|
|
T& X,
|
|
T& Y,
|
|
T& Z
|
|
) const
|
|
{
|
|
// for details on maths see http://www.colorado.edu/geography/gcraft/notes/datum/gif/llhxyz.gif
|
|
T sin_latitude = sin(latitude);
|
|
T cos_latitude = cos(latitude);
|
|
T N = _radiusEquator / sqrt( 1.0 - _eccentricitySquared*sin_latitude*sin_latitude);
|
|
X = (N+height) * cos_latitude*cos(longitude);
|
|
Y = (N+height) * cos_latitude*sin(longitude);
|
|
Z = (N*(1-_eccentricitySquared)+height)*sin_latitude;
|
|
}
|
|
|
|
|
|
void convertXYZToLatLongHeight(
|
|
T X,
|
|
T Y,
|
|
T Z,
|
|
T& latitude,
|
|
T& longitude,
|
|
T& height
|
|
) const
|
|
{
|
|
// http://www.colorado.edu/geography/gcraft/notes/datum/gif/xyzllh.gif
|
|
T p = (T)sqrt(X*X + Y*Y);
|
|
T theta = (T)atan2(Z*_radiusEquator , (p*_radiusPolar));
|
|
T eDashSquared = (_radiusEquator*_radiusEquator - _radiusPolar*_radiusPolar) / (_radiusPolar*_radiusPolar);
|
|
|
|
T sin_theta = (T)sin(theta);
|
|
T cos_theta = (T)cos(theta);
|
|
|
|
latitude = (T)atan( (Z + eDashSquared*_radiusPolar*sin_theta*sin_theta*sin_theta) /
|
|
(p - _eccentricitySquared*_radiusEquator*cos_theta*cos_theta*cos_theta) );
|
|
longitude = (T)atan2(Y,X);
|
|
|
|
T sin_latitude = (T)sin(latitude);
|
|
T N = _radiusEquator / (T)sqrt( 1.0 - _eccentricitySquared*sin_latitude*sin_latitude);
|
|
|
|
height = p/(T)cos(latitude) - N;
|
|
}
|
|
|
|
protected:
|
|
T _radiusEquator;
|
|
T _radiusPolar;
|
|
T _eccentricitySquared;
|
|
};
|
|
class Rgba4Byte
|
|
{
|
|
public:
|
|
Rgba4Byte(
|
|
unsigned char r = 255,
|
|
unsigned char g = 255,
|
|
unsigned char b = 255,
|
|
unsigned char a = 255
|
|
)
|
|
{
|
|
_r = r;
|
|
_g = g;
|
|
_b = b;
|
|
_a = a;
|
|
}
|
|
friend bool operator == (const Rgba4Byte& left,const Rgba4Byte& right)
|
|
{
|
|
return left._r==right._r &&
|
|
left._g==right._g &&
|
|
left._b==right._b &&
|
|
left._a==right._a;
|
|
}
|
|
friend bool operator != (const Rgba4Byte& left,const Rgba4Byte& right)
|
|
{
|
|
return left._r !=right._r ||
|
|
left._g!=right._g ||
|
|
left._b!=right._b ||
|
|
left._a!=right._a;
|
|
}
|
|
operator unsigned()
|
|
{
|
|
unsigned color;
|
|
char* pColor = (char*)&color;
|
|
pColor[0] = _r;
|
|
pColor[1] = _g;
|
|
pColor[2] = _b;
|
|
pColor[3] = _a;
|
|
return color;
|
|
}
|
|
operator int()
|
|
{
|
|
int color;
|
|
char* pColor = (char*)&color;
|
|
pColor[0] = _r;
|
|
pColor[1] = _g;
|
|
pColor[2] = _b;
|
|
pColor[3] = _a;
|
|
return color;
|
|
}
|
|
operator ulong()
|
|
{
|
|
return toUint();
|
|
}
|
|
uint toUint()
|
|
{
|
|
return (_b) | (_g << 8) | (_r << 16) | (_a << 24);
|
|
}
|
|
public:
|
|
unsigned char _b;
|
|
unsigned char _g;
|
|
unsigned char _r;
|
|
unsigned char _a;
|
|
};
|
|
|
|
typedef Rgba4Byte Rgba;
|
|
|
|
inline Rgba4Byte colorLerp(const Rgba4Byte& c1, const Rgba4Byte& c2, float s)
|
|
{
|
|
Rgba4Byte color;
|
|
|
|
color._r = (unsigned char)(c1._r + s * (c2._r - c1._r));
|
|
color._g = (unsigned char)(c1._g + s * (c2._g - c1._g));
|
|
color._b = (unsigned char)(c1._b + s * (c2._b - c1._b));
|
|
color._a = (unsigned char)(c1._a + s * (c2._a - c1._a));
|
|
return color;
|
|
}
|
|
|
|
template <typename T>
|
|
class tAxisAlignedBox2
|
|
{
|
|
public:
|
|
enum Extent
|
|
{
|
|
EXTENT_NULL,
|
|
EXTENT_FINITE,
|
|
EXTENT_INFINITE
|
|
};
|
|
public:
|
|
tvec2<T> _vMin;
|
|
tvec2<T> _vMax;
|
|
Extent mExtent;
|
|
public:
|
|
tvec2<T> center() const
|
|
{
|
|
return (_vMin + _vMax) * T(0.5);
|
|
}
|
|
|
|
tvec2<T> size() const
|
|
{
|
|
return _vMax - _vMin;
|
|
}
|
|
|
|
tvec2<T> halfSize() const
|
|
{
|
|
return (_vMax - _vMin) * T(0.5);
|
|
}
|
|
|
|
bool intersects(tvec2<T> v) const
|
|
{
|
|
return( v.x >= _vMin.x && v.x <= _vMax.x &&
|
|
v.y >= _vMin.y && v.y <= _vMax.y );
|
|
}
|
|
|
|
void merge(tvec2<T> point)
|
|
{
|
|
if (_vMin.x > point.x)
|
|
{
|
|
_vMin.x = point.x;
|
|
}
|
|
|
|
if (_vMin.y > point.y)
|
|
{
|
|
_vMin.y = point.y;
|
|
}
|
|
if (_vMax.x < point.x)
|
|
{
|
|
_vMax.x = point.x;
|
|
}
|
|
if (_vMax.y < point.y)
|
|
{
|
|
_vMax.y = point.y;
|
|
}
|
|
}
|
|
|
|
|
|
void merge(tAxisAlignedBox2<T> other)
|
|
{
|
|
_vMax.makeCeil(other._vMax);
|
|
_vMin.makeFloor(other._vMin);
|
|
}
|
|
|
|
bool contains(tvec2<T> point) const
|
|
{
|
|
return _vMin.x <= point.x && point.x <= _vMax.x &&
|
|
_vMin.y <= point.y && point.y <= _vMax.y ;
|
|
}
|
|
|
|
bool contains(tAxisAlignedBox2<T> other) const
|
|
{
|
|
return this->_vMin.x <= other._vMin.x &&
|
|
this->_vMin.y <= other._vMin.y &&
|
|
other._vMax.x <= this->_vMax.x &&
|
|
other._vMax.y <= this->_vMax.y ;
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
class tray
|
|
{
|
|
typedef T value_type;
|
|
typedef tray<T> type;
|
|
protected:
|
|
tvec3<T> _origin;
|
|
tvec3<T> _direction;
|
|
public:
|
|
tray():
|
|
_origin(value_type(0),value_type(0),value_type(0)),
|
|
_direction(value_type(0),value_type(0),value_type(1))
|
|
{}
|
|
tray(const tvec3<T>& origin, const tvec3<T>& direction):
|
|
_origin(origin),
|
|
_direction(direction)
|
|
{}
|
|
|
|
/**
|
|
* 设置射线的起点
|
|
*/
|
|
void setOrigin(const tvec3<T>& origin)
|
|
{
|
|
_origin = origin;
|
|
}
|
|
/**
|
|
* 返回射线的起点
|
|
*/
|
|
const tvec3<T>& getOrigin(void) const
|
|
{
|
|
return _origin;
|
|
}
|
|
|
|
/**
|
|
* 设置射线的方向
|
|
*/
|
|
void setDirection(const tvec3<T>& dir)
|
|
{
|
|
_direction = dir;
|
|
}
|
|
|
|
/**
|
|
* 返回射线的方向
|
|
*/
|
|
const tvec3<T>& getDirection(void) const
|
|
{
|
|
return _direction;
|
|
}
|
|
|
|
/**
|
|
* Gets the position of a point t units along the ray.
|
|
*/
|
|
tvec3<T> getPoint(T time) const
|
|
{
|
|
return tvec3<T>(_origin + (_direction * time));
|
|
}
|
|
|
|
/**
|
|
* 测试射线box相交
|
|
* 如果相交,返回值中的first == true.否则false
|
|
* second为射线到点的距离
|
|
* 调用getPoint方法,则返回交点
|
|
*/
|
|
std::pair<bool, T> intersects(const AxisAlignedBox<T>& box) const
|
|
{
|
|
T lowt = 0.0f;
|
|
T t;
|
|
bool hit = false;
|
|
tvec3<T> hitpoint;
|
|
tvec3<T> min = box.getMinimum();
|
|
tvec3<T> max = box.getMaximum();
|
|
|
|
/**
|
|
* 点在包围盒里面
|
|
*/
|
|
if ( _origin > min && _origin < max )
|
|
{
|
|
return std::pair<bool, T>(true, 0.0f);
|
|
}
|
|
|
|
// Check each face in turn, only check closest 3
|
|
// Min x
|
|
if (_origin.x <= min.x && _direction.x > 0)
|
|
{
|
|
t = (min.x - _origin.x) / _direction.x;
|
|
if (t >= 0)
|
|
{
|
|
// Substitute t back into ray and check bounds and dist
|
|
hitpoint = _origin + _direction * t;
|
|
if (hitpoint.y >= min.y &&
|
|
hitpoint.y <= max.y &&
|
|
hitpoint.z >= min.z &&
|
|
hitpoint.z <= max.z &&
|
|
(!hit || t < lowt))
|
|
{
|
|
hit = true;
|
|
lowt = t;
|
|
}
|
|
}
|
|
}
|
|
// Max x
|
|
if (_origin.x >= max.x && _direction.x < 0)
|
|
{
|
|
t = (max.x - _origin.x) / _direction.x;
|
|
if (t >= 0)
|
|
{
|
|
// Substitute t back into ray and check bounds and dist
|
|
hitpoint = _origin + _direction * t;
|
|
if (hitpoint.y >= min.y &&
|
|
hitpoint.y <= max.y &&
|
|
hitpoint.z >= min.z &&
|
|
hitpoint.z <= max.z &&
|
|
(!hit || t < lowt))
|
|
{
|
|
hit = true;
|
|
lowt = t;
|
|
}
|
|
}
|
|
}
|
|
// Min y
|
|
if (_origin.y <= min.y && _direction.y > 0)
|
|
{
|
|
t = (min.y - _origin.y) / _direction.y;
|
|
if (t >= 0)
|
|
{
|
|
// Substitute t back into ray and check bounds and dist
|
|
hitpoint = _origin + _direction * t;
|
|
if (hitpoint.x >= min.x &&
|
|
hitpoint.x <= max.x &&
|
|
hitpoint.z >= min.z &&
|
|
hitpoint.z <= max.z &&
|
|
(!hit || t < lowt))
|
|
{
|
|
hit = true;
|
|
lowt = t;
|
|
}
|
|
}
|
|
}
|
|
// Max y
|
|
if (_origin.y >= max.y && _direction.y < 0)
|
|
{
|
|
t = (max.y - _origin.y) / _direction.y;
|
|
if (t >= 0)
|
|
{
|
|
// Substitute t back into ray and check bounds and dist
|
|
hitpoint = _origin + _direction * t;
|
|
if (hitpoint.x >= min.x &&
|
|
hitpoint.x <= max.x &&
|
|
hitpoint.z >= min.z &&
|
|
hitpoint.z <= max.z &&
|
|
(!hit || t < lowt))
|
|
{
|
|
hit = true;
|
|
lowt = t;
|
|
}
|
|
}
|
|
}
|
|
// Min z
|
|
if (_origin.z <= min.z && _direction.z > 0)
|
|
{
|
|
t = (min.z - _origin.z) / _direction.z;
|
|
if (t >= 0)
|
|
{
|
|
// Substitute t back into ray and check bounds and dist
|
|
hitpoint = _origin + _direction * t;
|
|
if (hitpoint.x >= min.x &&
|
|
hitpoint.x <= max.x &&
|
|
hitpoint.y >= min.y &&
|
|
hitpoint.y <= max.y &&
|
|
(!hit || t < lowt))
|
|
{
|
|
hit = true;
|
|
lowt = t;
|
|
}
|
|
}
|
|
}
|
|
// Max z
|
|
if (_origin.z >= max.z && _direction.z < 0)
|
|
{
|
|
t = (max.z - _origin.z) / _direction.z;
|
|
if (t >= 0)
|
|
{
|
|
// Substitute t back into ray and check bounds and dist
|
|
hitpoint = _origin + _direction * t;
|
|
if (hitpoint.x >= min.x &&
|
|
hitpoint.x <= max.x &&
|
|
hitpoint.y >= min.y &&
|
|
hitpoint.y <= max.y &&
|
|
(!hit || t < lowt))
|
|
{
|
|
hit = true;
|
|
lowt = t;
|
|
}
|
|
}
|
|
}
|
|
return std::pair<bool, T>(hit, lowt);
|
|
}
|
|
};
|
|
|
|
|
|
template<class T>
|
|
class Plane
|
|
{
|
|
public:
|
|
tvec3<T> _normal;
|
|
T _distance;
|
|
public:
|
|
Plane ()
|
|
{
|
|
_normal = tvec3<T>(0,0,0);
|
|
_distance = 0.0f;
|
|
}
|
|
Plane (const Plane& right)
|
|
{
|
|
_normal = right._normal;
|
|
_distance = right._distance;
|
|
}
|
|
/** Construct a plane through a normal, and a distance to move the plane along the normal.*/
|
|
Plane (const tvec3<T>& rkNormal, T fConstant)
|
|
{
|
|
_normal = rkNormal;
|
|
_distance = -fConstant;
|
|
}
|
|
/** Construct a plane using the 4 constants directly **/
|
|
Plane (T x, T y, T z, T o)
|
|
{
|
|
_normal = tvec3<T>(x, y, z);
|
|
T invLen = 1.0f / (_normal).length();
|
|
_normal *= invLen;
|
|
_distance = o * invLen;
|
|
}
|
|
Plane (const tvec3<T>& rkNormal, const tvec3<T>& rkPoint)
|
|
{
|
|
redefine(rkNormal, rkPoint);
|
|
}
|
|
Plane (const tvec3<T>& rkPoint0, const tvec3<T>& rkPoint1,const tvec3<T>& rkPoint2)
|
|
{
|
|
redefine(rkPoint0, rkPoint1, rkPoint2);
|
|
}
|
|
/**
|
|
* 到点的距离
|
|
*/
|
|
float distance(const tvec3<T> &pos) const
|
|
{
|
|
return dot(_normal,pos) + _distance;
|
|
}
|
|
|
|
/** The "positive side" of the plane is the half space to which the
|
|
plane normal points. The "negative side" is the other half
|
|
space. The flag "no side" indicates the plane itself.
|
|
*/
|
|
enum Side
|
|
{
|
|
NO_SIDE,
|
|
POSITIVE_SIDE,
|
|
NEGATIVE_SIDE,
|
|
BOTH_SIDE
|
|
};
|
|
|
|
Side getSide (const tvec3<T>& rkPoint) const
|
|
{
|
|
float fDistance = getDistance(rkPoint);
|
|
|
|
if ( fDistance < 0.0 )
|
|
return Plane::NEGATIVE_SIDE;
|
|
|
|
if ( fDistance > 0.0 )
|
|
return Plane::POSITIVE_SIDE;
|
|
|
|
return Plane::NO_SIDE;
|
|
}
|
|
|
|
|
|
Side getSide (const tvec3<T>& centre, const tvec3<T>& halfSize) const
|
|
{
|
|
// Calculate the distance between box centre and the plane
|
|
float dist = getDistance(centre);
|
|
|
|
// Calculate the maximise allows absolute distance for
|
|
// the distance between box centre and plane
|
|
float maxAbsDist = _normal.absDot(halfSize);
|
|
|
|
if (dist < -maxAbsDist)
|
|
return Plane::NEGATIVE_SIDE;
|
|
|
|
if (dist > +maxAbsDist)
|
|
return Plane::POSITIVE_SIDE;
|
|
|
|
return Plane::BOTH_SIDE;
|
|
}
|
|
|
|
float getDistance (const tvec3<T>& rkPoint) const
|
|
{
|
|
return _normal.dot(rkPoint) + _distance;
|
|
}
|
|
|
|
void redefine(const tvec3<T>& rkPoint0, const tvec3<T>& rkPoint1,
|
|
const tvec3<T>& rkPoint2)
|
|
{
|
|
tvec3<T> kEdge1 = rkPoint1 - rkPoint0;
|
|
tvec3<T> kEdge2 = rkPoint2 - rkPoint0;
|
|
_normal = cross(kEdge1,kEdge2);
|
|
_normal.normalise();
|
|
_distance = -dot(_normal,rkPoint0);
|
|
}
|
|
|
|
/** Redefine this plane based on a normal and a point. */
|
|
void redefine(const tvec3<T>& rkNormal, const tvec3<T>& rkPoint)
|
|
{
|
|
_normal = rkNormal;
|
|
_distance = -dot(rkNormal,rkPoint);
|
|
}
|
|
|
|
|
|
// tvec3<T> projectVector(const tvec3<T>& p) const
|
|
// {
|
|
// matrix3 xform;
|
|
// xform[0][0] = 1.0f - _normal.x * _normal.x;
|
|
// xform[0][1] = -_normal.x * _normal.y;
|
|
// xform[0][2] = -_normal.x * _normal.z;
|
|
// xform[1][0] = -_normal.y * _normal.x;
|
|
// xform[1][1] = 1.0f - _normal.y * _normal.y;
|
|
// xform[1][2] = -_normal.y * _normal.z;
|
|
// xform[2][0] = -_normal.z * _normal.x;
|
|
// xform[2][1] = -_normal.z * _normal.y;
|
|
// xform[2][2] = 1.0f - _normal.z * _normal.z;
|
|
// return xform * p;
|
|
// }
|
|
|
|
/** Normalises the plane.
|
|
@remarks
|
|
This method normalises the plane's normal and the length scale of d
|
|
is as well.
|
|
@note
|
|
This function will not crash for zero-sized vectors, but there
|
|
will be no changes made to their components.
|
|
@returns The previous length of the plane's normal.
|
|
*/
|
|
float normalise(void)
|
|
{
|
|
float fLength = _normal.length();
|
|
|
|
// Will also work for zero-sized vectors, but will change nothing
|
|
if (fLength > 1e-08f)
|
|
{
|
|
float fInvLength = 1.0f / fLength;
|
|
_normal *= fInvLength;
|
|
_distance *= fInvLength;
|
|
}
|
|
|
|
return fLength;
|
|
}
|
|
|
|
|
|
|
|
/// Comparison operator
|
|
bool operator==(const Plane& right) const
|
|
{
|
|
return (right._distance == _distance && right._normal == _normal);
|
|
}
|
|
bool operator!=(const Plane& right) const
|
|
{
|
|
return (right._distance != _distance && right._normal != _normal);
|
|
}
|
|
};
|
|
|
|
template<class T>
|
|
class tfrustum
|
|
{
|
|
public:
|
|
enum
|
|
{
|
|
FRUSTUM_LEFT = 0,
|
|
FRUSTUM_RIGHT = 1,
|
|
FRUSTUM_TOP = 2,
|
|
FRUSTUM_BOTTOM = 3,
|
|
FRUSTUM_FAR = 4,
|
|
FRUSTUM_NEAR = 5,
|
|
};
|
|
public:
|
|
/**
|
|
* project * modleview
|
|
*/
|
|
void loadFrustum(const tmat4x4<T> &mvp)
|
|
{
|
|
const T* dataPtr = mvp.data();
|
|
_planes[FRUSTUM_LEFT ] = Plane<T>(dataPtr[12] - dataPtr[0], dataPtr[13] - dataPtr[1], dataPtr[14] - dataPtr[2], dataPtr[15] - dataPtr[3]);
|
|
_planes[FRUSTUM_RIGHT ] = Plane<T>(dataPtr[12] + dataPtr[0], dataPtr[13] + dataPtr[1], dataPtr[14] + dataPtr[2], dataPtr[15] + dataPtr[3]);
|
|
|
|
_planes[FRUSTUM_TOP ] = Plane<T>(dataPtr[12] - dataPtr[4], dataPtr[13] - dataPtr[5], dataPtr[14] - dataPtr[6], dataPtr[15] - dataPtr[7]);
|
|
_planes[FRUSTUM_BOTTOM] = Plane<T>(dataPtr[12] + dataPtr[4], dataPtr[13] + dataPtr[5], dataPtr[14] + dataPtr[6], dataPtr[15] + dataPtr[7]);
|
|
|
|
_planes[FRUSTUM_FAR ] = Plane<T>(dataPtr[12] - dataPtr[8], dataPtr[13] - dataPtr[9], dataPtr[14] - dataPtr[10], dataPtr[15] - dataPtr[11]);
|
|
_planes[FRUSTUM_NEAR ] = Plane<T>(dataPtr[12] + dataPtr[8], dataPtr[13] + dataPtr[9], dataPtr[14] + dataPtr[10], dataPtr[15] + dataPtr[11]);
|
|
}
|
|
bool pointInFrustum(const tvec3<T> &pos) const
|
|
{
|
|
for (int i = 0; i < 6; i++)
|
|
{
|
|
if (_planes[i].distance(pos) <= 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
bool sphereInFrustum(const tvec3<T> &pos, const float radius) const
|
|
{
|
|
for (int i = 0; i < 6; i++)
|
|
{
|
|
if (_planes[i].distance(pos) <= -radius)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
bool cubeInFrustum(T minX,T maxX,T minY,T maxY,T minZ,T maxZ) const
|
|
{
|
|
for (int i = 0; i < 6; i++)
|
|
{
|
|
if (_planes[i].distance(tvec3<T>(minX, minY, minZ)) > 0) continue;
|
|
if (_planes[i].distance(tvec3<T>(minX, minY, maxZ)) > 0) continue;
|
|
if (_planes[i].distance(tvec3<T>(minX, maxY, minZ)) > 0) continue;
|
|
if (_planes[i].distance(tvec3<T>(minX, maxY, maxZ)) > 0) continue;
|
|
if (_planes[i].distance(tvec3<T>(maxX, minY, minZ)) > 0) continue;
|
|
if (_planes[i].distance(tvec3<T>(maxX, minY, maxZ)) > 0) continue;
|
|
if (_planes[i].distance(tvec3<T>(maxX, maxY, minZ)) > 0) continue;
|
|
if (_planes[i].distance(tvec3<T>(maxX, maxY, maxZ)) > 0) continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const Plane<T> &getPlane(const int plane) const
|
|
{
|
|
return _planes[plane];
|
|
}
|
|
protected:
|
|
Plane<T> _planes[6];
|
|
};
|
|
|
|
|
|
typedef float real;
|
|
typedef tvec2<int> int2;
|
|
typedef tvec2<float> float2;
|
|
typedef tvec2<double> double2;
|
|
|
|
typedef tvec2<real> real2;
|
|
|
|
|
|
typedef tvec3<int> int3;
|
|
typedef tvec3<unsigned> uint3;
|
|
typedef tvec3<float> float3;
|
|
typedef tvec3<double> double3;
|
|
|
|
typedef tvec3<real> real3;
|
|
|
|
|
|
typedef tvec4<int> int4;
|
|
typedef tvec4<float> float4;
|
|
typedef tvec4<double> double4;
|
|
typedef tvec4<real> real4;
|
|
typedef trect<real> rect4;
|
|
typedef trect<int> rect4i;
|
|
|
|
typedef AxisAlignedBox<float> aabb3d;
|
|
typedef AxisAlignedBox<real> aabbr;
|
|
|
|
typedef AxisAlignedBox2D<float> AABB2D;
|
|
typedef AxisAlignedBox2D<real> aabb2dr;
|
|
typedef AxisAlignedBox2D<int> aabb2di;
|
|
|
|
|
|
|
|
typedef tmat2x2<float> matrix2;
|
|
typedef tmat3x3<float> matrix3;
|
|
typedef tmat4x4<float> matrix4;
|
|
typedef tmat4x4<real> matrix4r;
|
|
|
|
typedef tquat<float> quaternion;
|
|
typedef tquat<real> quatr;
|
|
typedef tray<float> Ray;
|
|
typedef tfrustum<float> Frustum;
|
|
|
|
typedef tellipsoidModel<float> ellipsoid;
|
|
|
|
}
|