|
|
/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtc_matrix_inverse /// @file glm/gtc/matrix_inverse.inl /// @date 2005-12-21 / 2011-06-15 /// @author Christophe Riccio ///////////////////////////////////////////////////////////////////////////////////
namespace glm { template <typename T> GLM_FUNC_QUALIFIER detail::tmat3x3<T> affineInverse ( detail::tmat3x3<T> const & m ) { detail::tmat3x3<T> Result(m); Result[2] = detail::tvec3<T>(0, 0, 1); Result = transpose(Result); detail::tvec3<T> Translation = Result * detail::tvec3<T>(-detail::tvec2<T>(m[2]), m[2][2]); Result[2] = Translation; return Result; }
template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> affineInverse ( detail::tmat4x4<T> const & m ) { detail::tmat4x4<T> Result(m); Result[3] = detail::tvec4<T>(0, 0, 0, 1); Result = transpose(Result); detail::tvec4<T> Translation = Result * detail::tvec4<T>(-detail::tvec3<T>(m[3]), m[3][3]); Result[3] = Translation; return Result; }
template <typename valType> GLM_FUNC_QUALIFIER detail::tmat2x2<valType> inverseTranspose ( detail::tmat2x2<valType> const & m ) { valType Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
detail::tmat2x2<valType> Inverse( + m[1][1] / Determinant, - m[0][1] / Determinant, - m[1][0] / Determinant, + m[0][0] / Determinant);
return Inverse; }
template <typename valType> GLM_FUNC_QUALIFIER detail::tmat3x3<valType> inverseTranspose ( detail::tmat3x3<valType> const & m ) { valType Determinant = + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
detail::tmat3x3<valType> Inverse; Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]); Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]); Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]); Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]); Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]); Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]); Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]); Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]); Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]); Inverse /= Determinant;
return Inverse; }
template <typename valType> GLM_FUNC_QUALIFIER detail::tmat4x4<valType> inverseTranspose ( detail::tmat4x4<valType> const & m ) { valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; valType SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
detail::tmat4x4<valType> Inverse; Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02); Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04); Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05); Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02); Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04); Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05); Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08); Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10); Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12); Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15); Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17); Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18); Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
valType Determinant = + m[0][0] * Inverse[0][0] + m[0][1] * Inverse[0][1] + m[0][2] * Inverse[0][2] + m[0][3] * Inverse[0][3];
Inverse /= Determinant; return Inverse; } }//namespace glm
|