|
|
/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtc_matrix_transform /// @file glm/gtc/matrix_transform.inl /// @date 2009-04-29 / 2011-06-15 /// @author Christophe Riccio ///////////////////////////////////////////////////////////////////////////////////
namespace glm { template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> translate ( detail::tmat4x4<T> const & m, detail::tvec3<T> const & v ) { detail::tmat4x4<T> Result(m); Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; return Result; } template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> rotate ( detail::tmat4x4<T> const & m, T const & angle, detail::tvec3<T> const & v ) { #ifdef GLM_FORCE_RADIANS T a = angle; #else T a = radians(angle); #endif T c = cos(a); T s = sin(a);
detail::tvec3<T> axis = normalize(v);
detail::tvec3<T> temp = (T(1) - c) * axis;
detail::tmat4x4<T> Rotate(detail::tmat4x4<T>::null); Rotate[0][0] = c + temp[0] * axis[0]; Rotate[0][1] = 0 + temp[0] * axis[1] + s * axis[2]; Rotate[0][2] = 0 + temp[0] * axis[2] - s * axis[1];
Rotate[1][0] = 0 + temp[1] * axis[0] - s * axis[2]; Rotate[1][1] = c + temp[1] * axis[1]; Rotate[1][2] = 0 + temp[1] * axis[2] + s * axis[0];
Rotate[2][0] = 0 + temp[2] * axis[0] + s * axis[1]; Rotate[2][1] = 0 + temp[2] * axis[1] - s * axis[0]; Rotate[2][2] = c + temp[2] * axis[2];
detail::tmat4x4<T> Result(detail::tmat4x4<T>::null); Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; Result[3] = m[3]; return Result; }
template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> scale ( detail::tmat4x4<T> const & m, detail::tvec3<T> const & v ) { detail::tmat4x4<T> Result(detail::tmat4x4<T>::null); Result[0] = m[0] * v[0]; Result[1] = m[1] * v[1]; Result[2] = m[2] * v[2]; Result[3] = m[3]; return Result; }
template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> translate_slow ( detail::tmat4x4<T> const & m, detail::tvec3<T> const & v ) { detail::tmat4x4<T> Result(T(1)); Result[3] = detail::tvec4<T>(v, T(1)); return m * Result;
//detail::tmat4x4<valType> Result(m); Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; //Result[3][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0]; //Result[3][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1]; //Result[3][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2]; //Result[3][3] = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3]; //return Result; } template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> rotate_slow ( detail::tmat4x4<T> const & m, T const & angle, detail::tvec3<T> const & v ) { #ifdef GLM_FORCE_RADIANS T const a = angle; #else T const a = radians(angle); #endif T c = cos(a); T s = sin(a); detail::tmat4x4<T> Result;
detail::tvec3<T> axis = normalize(v);
Result[0][0] = c + (1 - c) * axis.x * axis.x; Result[0][1] = (1 - c) * axis.x * axis.y + s * axis.z; Result[0][2] = (1 - c) * axis.x * axis.z - s * axis.y; Result[0][3] = 0;
Result[1][0] = (1 - c) * axis.y * axis.x - s * axis.z; Result[1][1] = c + (1 - c) * axis.y * axis.y; Result[1][2] = (1 - c) * axis.y * axis.z + s * axis.x; Result[1][3] = 0;
Result[2][0] = (1 - c) * axis.z * axis.x + s * axis.y; Result[2][1] = (1 - c) * axis.z * axis.y - s * axis.x; Result[2][2] = c + (1 - c) * axis.z * axis.z; Result[2][3] = 0;
Result[3] = detail::tvec4<T>(0, 0, 0, 1); return m * Result; }
template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> scale_slow ( detail::tmat4x4<T> const & m, detail::tvec3<T> const & v ) { detail::tmat4x4<T> Result(T(1)); Result[0][0] = v.x; Result[1][1] = v.y; Result[2][2] = v.z; return m * Result; }
template <typename valType> GLM_FUNC_QUALIFIER detail::tmat4x4<valType> ortho ( valType const & left, valType const & right, valType const & bottom, valType const & top, valType const & zNear, valType const & zFar ) { detail::tmat4x4<valType> Result(1); Result[0][0] = valType(2) / (right - left); Result[1][1] = valType(2) / (top - bottom); Result[2][2] = - valType(2) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); Result[3][2] = - (zFar + zNear) / (zFar - zNear); return Result; }
template <typename valType> GLM_FUNC_QUALIFIER detail::tmat4x4<valType> ortho( valType const & left, valType const & right, valType const & bottom, valType const & top) { detail::tmat4x4<valType> Result(1); Result[0][0] = valType(2) / (right - left); Result[1][1] = valType(2) / (top - bottom); Result[2][2] = - valType(1); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); return Result; }
template <typename valType> GLM_FUNC_QUALIFIER detail::tmat4x4<valType> frustum ( valType const & left, valType const & right, valType const & bottom, valType const & top, valType const & nearVal, valType const & farVal ) { detail::tmat4x4<valType> Result(0); Result[0][0] = (valType(2) * nearVal) / (right - left); Result[1][1] = (valType(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); Result[2][2] = -(farVal + nearVal) / (farVal - nearVal); Result[2][3] = valType(-1); Result[3][2] = -(valType(2) * farVal * nearVal) / (farVal - nearVal); return Result; }
template <typename valType> GLM_FUNC_QUALIFIER detail::tmat4x4<valType> perspective ( valType const & fovy, valType const & aspect, valType const & zNear, valType const & zFar ) { assert(aspect != valType(0)); assert(zFar != zNear);
#ifdef GLM_FORCE_RADIANS valType const rad = fovy; #else valType const rad = glm::radians(fovy); #endif
valType tanHalfFovy = tan(rad / valType(2)); detail::tmat4x4<valType> Result(valType(0)); Result[0][0] = valType(1) / (aspect * tanHalfFovy); Result[1][1] = valType(1) / (tanHalfFovy); Result[2][2] = - (zFar + zNear) / (zFar - zNear); Result[2][3] = - valType(1); Result[3][2] = - (valType(2) * zFar * zNear) / (zFar - zNear); return Result; } template <typename valType> GLM_FUNC_QUALIFIER detail::tmat4x4<valType> perspectiveFov ( valType const & fov, valType const & width, valType const & height, valType const & zNear, valType const & zFar ) { #ifdef GLM_FORCE_RADIANS valType rad = fov; #else valType rad = glm::radians(fov); #endif valType h = glm::cos(valType(0.5) * rad) / glm::sin(valType(0.5) * rad); valType w = h * height / width; ///todo max(width , Height) / min(width , Height)?
detail::tmat4x4<valType> Result(valType(0)); Result[0][0] = w; Result[1][1] = h; Result[2][2] = - (zFar + zNear) / (zFar - zNear); Result[2][3] = - valType(1); Result[3][2] = - (valType(2) * zFar * zNear) / (zFar - zNear); return Result; }
template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> infinitePerspective ( T fovy, T aspect, T zNear ) { #ifdef GLM_FORCE_RADIANS T const range = tan(fovy / T(2)) * zNear; #else T const range = tan(radians(fovy / T(2))) * zNear; #endif T left = -range * aspect; T right = range * aspect; T bottom = -range; T top = range;
detail::tmat4x4<T> Result(T(0)); Result[0][0] = (T(2) * zNear) / (right - left); Result[1][1] = (T(2) * zNear) / (top - bottom); Result[2][2] = - T(1); Result[2][3] = - T(1); Result[3][2] = - T(2) * zNear; return Result; }
template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> tweakedInfinitePerspective ( T fovy, T aspect, T zNear ) { #ifdef GLM_FORCE_RADIANS T range = tan(fovy / T(2)) * zNear; #else T range = tan(radians(fovy / T(2))) * zNear; #endif T left = -range * aspect; T right = range * aspect; T bottom = -range; T top = range;
detail::tmat4x4<T> Result(T(0)); Result[0][0] = (T(2) * zNear) / (right - left); Result[1][1] = (T(2) * zNear) / (top - bottom); Result[2][2] = T(0.0001) - T(1); Result[2][3] = T(-1); Result[3][2] = - (T(0.0001) - T(2)) * zNear; return Result; }
template <typename T, typename U> GLM_FUNC_QUALIFIER detail::tvec3<T> project ( detail::tvec3<T> const & obj, detail::tmat4x4<T> const & model, detail::tmat4x4<T> const & proj, detail::tvec4<U> const & viewport ) { detail::tvec4<T> tmp = detail::tvec4<T>(obj, T(1)); tmp = model * tmp; tmp = proj * tmp;
tmp /= tmp.w; tmp = tmp * T(0.5) + T(0.5); tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
return detail::tvec3<T>(tmp); }
template <typename T, typename U> GLM_FUNC_QUALIFIER detail::tvec3<T> unProject ( detail::tvec3<T> const & win, detail::tmat4x4<T> const & model, detail::tmat4x4<T> const & proj, detail::tvec4<U> const & viewport ) { detail::tmat4x4<T> inverse = glm::inverse(proj * model);
detail::tvec4<T> tmp = detail::tvec4<T>(win, T(1)); tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); tmp = tmp * T(2) - T(1);
detail::tvec4<T> obj = inverse * tmp; obj /= obj.w;
return detail::tvec3<T>(obj); }
template <typename T, typename U> detail::tmat4x4<T> pickMatrix ( detail::tvec2<T> const & center, detail::tvec2<T> const & delta, detail::tvec4<U> const & viewport ) { assert(delta.x > T(0) && delta.y > T(0)); detail::tmat4x4<T> Result(1.0f);
if(!(delta.x > T(0) && delta.y > T(0))) return Result; // Error
detail::tvec3<T> Temp( (T(viewport[2]) - T(2) * (center.x - T(viewport[0]))) / delta.x, (T(viewport[3]) - T(2) * (center.y - T(viewport[1]))) / delta.y, T(0));
// Translate and scale the picked region to the entire window Result = translate(Result, Temp); return scale(Result, detail::tvec3<T>(T(viewport[2]) / delta.x, T(viewport[3]) / delta.y, T(1))); }
template <typename T> GLM_FUNC_QUALIFIER detail::tmat4x4<T> lookAt ( detail::tvec3<T> const & eye, detail::tvec3<T> const & center, detail::tvec3<T> const & up ) { detail::tvec3<T> f = normalize(center - eye); detail::tvec3<T> u = normalize(up); detail::tvec3<T> s = normalize(cross(f, u)); u = cross(s, f);
detail::tmat4x4<T> Result(1); Result[0][0] = s.x; Result[1][0] = s.y; Result[2][0] = s.z; Result[0][1] = u.x; Result[1][1] = u.y; Result[2][1] = u.z; Result[0][2] =-f.x; Result[1][2] =-f.y; Result[2][2] =-f.z; Result[3][0] =-dot(s, eye); Result[3][1] =-dot(u, eye); Result[3][2] = dot(f, eye); return Result; } }//namespace glm
|