/******/ (function(modules) { // webpackBootstrap /******/ // The module cache /******/ var installedModules = {}; /******/ // The require function /******/ function __webpack_require__(moduleId) { /******/ // Check if module is in cache /******/ if(installedModules[moduleId]) /******/ return installedModules[moduleId].exports; /******/ // Create a new module (and put it into the cache) /******/ var module = installedModules[moduleId] = { /******/ exports: {}, /******/ id: moduleId, /******/ loaded: false /******/ }; /******/ // Execute the module function /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__); /******/ // Flag the module as loaded /******/ module.loaded = true; /******/ // Return the exports of the module /******/ return module.exports; /******/ } /******/ // expose the modules object (__webpack_modules__) /******/ __webpack_require__.m = modules; /******/ // expose the module cache /******/ __webpack_require__.c = installedModules; /******/ // __webpack_public_path__ /******/ __webpack_require__.p = ""; /******/ // Load entry module and return exports /******/ return __webpack_require__(0); /******/ }) /************************************************************************/ /******/ ([ /* 0 */ /***/ (function(module, exports, __webpack_require__) { module.exports = __webpack_require__(1); /***/ }), /* 1 */ /***/ (function(module, exports, __webpack_require__) { 'use strict';var _three = __webpack_require__(2);var THREE = _interopRequireWildcard(_three);function _interopRequireWildcard(obj) {if (obj && obj.__esModule) {return obj;} else {var newObj = {};if (obj != null) {for (var key in obj) {if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key];}}newObj.default = obj;return newObj;}} var renderer = new THREE.WebGLRenderer(); renderer.setSize(window.innerWidth, window.innerHeight); renderer.setClearColor(0xb9d3ff, 1); //设置背景颜色 document.body.appendChild(renderer.domElement); var camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 1, 1000); camera.position.set(0, 0, 100); camera.lookAt(0, 0, 0); var scene = new THREE.Scene(); renderer.render(scene, camera); /***/ }), /* 2 */ /***/ (function(module, exports, __webpack_require__) { (function (global, factory) { true ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {})); }(this, (function (exports) { 'use strict'; // Polyfills if ( Number.EPSILON === undefined ) { Number.EPSILON = Math.pow( 2, - 52 ); } if ( Number.isInteger === undefined ) { // Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger Number.isInteger = function ( value ) { return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value; }; } // if ( Math.sign === undefined ) { // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign Math.sign = function ( x ) { return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x; }; } if ( 'name' in Function.prototype === false ) { // Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name Object.defineProperty( Function.prototype, 'name', { get: function () { return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ]; } } ); } if ( Object.assign === undefined ) { // Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign Object.assign = function ( target ) { if ( target === undefined || target === null ) { throw new TypeError( 'Cannot convert undefined or null to object' ); } var output = Object( target ); for ( var index = 1; index < arguments.length; index ++ ) { var source = arguments[ index ]; if ( source !== undefined && source !== null ) { for ( var nextKey in source ) { if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) { output[ nextKey ] = source[ nextKey ]; } } } } return output; }; } var REVISION = '120'; var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 }; var TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 }; var CullFaceNone = 0; var CullFaceBack = 1; var CullFaceFront = 2; var CullFaceFrontBack = 3; var BasicShadowMap = 0; var PCFShadowMap = 1; var PCFSoftShadowMap = 2; var VSMShadowMap = 3; var FrontSide = 0; var BackSide = 1; var DoubleSide = 2; var FlatShading = 1; var SmoothShading = 2; var NoBlending = 0; var NormalBlending = 1; var AdditiveBlending = 2; var SubtractiveBlending = 3; var MultiplyBlending = 4; var CustomBlending = 5; var AddEquation = 100; var SubtractEquation = 101; var ReverseSubtractEquation = 102; var MinEquation = 103; var MaxEquation = 104; var ZeroFactor = 200; var OneFactor = 201; var SrcColorFactor = 202; var OneMinusSrcColorFactor = 203; var SrcAlphaFactor = 204; var OneMinusSrcAlphaFactor = 205; var DstAlphaFactor = 206; var OneMinusDstAlphaFactor = 207; var DstColorFactor = 208; var OneMinusDstColorFactor = 209; var SrcAlphaSaturateFactor = 210; var NeverDepth = 0; var AlwaysDepth = 1; var LessDepth = 2; var LessEqualDepth = 3; var EqualDepth = 4; var GreaterEqualDepth = 5; var GreaterDepth = 6; var NotEqualDepth = 7; var MultiplyOperation = 0; var MixOperation = 1; var AddOperation = 2; var NoToneMapping = 0; var LinearToneMapping = 1; var ReinhardToneMapping = 2; var CineonToneMapping = 3; var ACESFilmicToneMapping = 4; var CustomToneMapping = 5; var UVMapping = 300; var CubeReflectionMapping = 301; var CubeRefractionMapping = 302; var EquirectangularReflectionMapping = 303; var EquirectangularRefractionMapping = 304; var CubeUVReflectionMapping = 306; var CubeUVRefractionMapping = 307; var RepeatWrapping = 1000; var ClampToEdgeWrapping = 1001; var MirroredRepeatWrapping = 1002; var NearestFilter = 1003; var NearestMipmapNearestFilter = 1004; var NearestMipMapNearestFilter = 1004; var NearestMipmapLinearFilter = 1005; var NearestMipMapLinearFilter = 1005; var LinearFilter = 1006; var LinearMipmapNearestFilter = 1007; var LinearMipMapNearestFilter = 1007; var LinearMipmapLinearFilter = 1008; var LinearMipMapLinearFilter = 1008; var UnsignedByteType = 1009; var ByteType = 1010; var ShortType = 1011; var UnsignedShortType = 1012; var IntType = 1013; var UnsignedIntType = 1014; var FloatType = 1015; var HalfFloatType = 1016; var UnsignedShort4444Type = 1017; var UnsignedShort5551Type = 1018; var UnsignedShort565Type = 1019; var UnsignedInt248Type = 1020; var AlphaFormat = 1021; var RGBFormat = 1022; var RGBAFormat = 1023; var LuminanceFormat = 1024; var LuminanceAlphaFormat = 1025; var RGBEFormat = RGBAFormat; var DepthFormat = 1026; var DepthStencilFormat = 1027; var RedFormat = 1028; var RedIntegerFormat = 1029; var RGFormat = 1030; var RGIntegerFormat = 1031; var RGBIntegerFormat = 1032; var RGBAIntegerFormat = 1033; var RGB_S3TC_DXT1_Format = 33776; var RGBA_S3TC_DXT1_Format = 33777; var RGBA_S3TC_DXT3_Format = 33778; var RGBA_S3TC_DXT5_Format = 33779; var RGB_PVRTC_4BPPV1_Format = 35840; var RGB_PVRTC_2BPPV1_Format = 35841; var RGBA_PVRTC_4BPPV1_Format = 35842; var RGBA_PVRTC_2BPPV1_Format = 35843; var RGB_ETC1_Format = 36196; var RGB_ETC2_Format = 37492; var RGBA_ETC2_EAC_Format = 37496; var RGBA_ASTC_4x4_Format = 37808; var RGBA_ASTC_5x4_Format = 37809; var RGBA_ASTC_5x5_Format = 37810; var RGBA_ASTC_6x5_Format = 37811; var RGBA_ASTC_6x6_Format = 37812; var RGBA_ASTC_8x5_Format = 37813; var RGBA_ASTC_8x6_Format = 37814; var RGBA_ASTC_8x8_Format = 37815; var RGBA_ASTC_10x5_Format = 37816; var RGBA_ASTC_10x6_Format = 37817; var RGBA_ASTC_10x8_Format = 37818; var RGBA_ASTC_10x10_Format = 37819; var RGBA_ASTC_12x10_Format = 37820; var RGBA_ASTC_12x12_Format = 37821; var RGBA_BPTC_Format = 36492; var SRGB8_ALPHA8_ASTC_4x4_Format = 37840; var SRGB8_ALPHA8_ASTC_5x4_Format = 37841; var SRGB8_ALPHA8_ASTC_5x5_Format = 37842; var SRGB8_ALPHA8_ASTC_6x5_Format = 37843; var SRGB8_ALPHA8_ASTC_6x6_Format = 37844; var SRGB8_ALPHA8_ASTC_8x5_Format = 37845; var SRGB8_ALPHA8_ASTC_8x6_Format = 37846; var SRGB8_ALPHA8_ASTC_8x8_Format = 37847; var SRGB8_ALPHA8_ASTC_10x5_Format = 37848; var SRGB8_ALPHA8_ASTC_10x6_Format = 37849; var SRGB8_ALPHA8_ASTC_10x8_Format = 37850; var SRGB8_ALPHA8_ASTC_10x10_Format = 37851; var SRGB8_ALPHA8_ASTC_12x10_Format = 37852; var SRGB8_ALPHA8_ASTC_12x12_Format = 37853; var LoopOnce = 2200; var LoopRepeat = 2201; var LoopPingPong = 2202; var InterpolateDiscrete = 2300; var InterpolateLinear = 2301; var InterpolateSmooth = 2302; var ZeroCurvatureEnding = 2400; var ZeroSlopeEnding = 2401; var WrapAroundEnding = 2402; var NormalAnimationBlendMode = 2500; var AdditiveAnimationBlendMode = 2501; var TrianglesDrawMode = 0; var TriangleStripDrawMode = 1; var TriangleFanDrawMode = 2; var LinearEncoding = 3000; var sRGBEncoding = 3001; var GammaEncoding = 3007; var RGBEEncoding = 3002; var LogLuvEncoding = 3003; var RGBM7Encoding = 3004; var RGBM16Encoding = 3005; var RGBDEncoding = 3006; var BasicDepthPacking = 3200; var RGBADepthPacking = 3201; var TangentSpaceNormalMap = 0; var ObjectSpaceNormalMap = 1; var ZeroStencilOp = 0; var KeepStencilOp = 7680; var ReplaceStencilOp = 7681; var IncrementStencilOp = 7682; var DecrementStencilOp = 7683; var IncrementWrapStencilOp = 34055; var DecrementWrapStencilOp = 34056; var InvertStencilOp = 5386; var NeverStencilFunc = 512; var LessStencilFunc = 513; var EqualStencilFunc = 514; var LessEqualStencilFunc = 515; var GreaterStencilFunc = 516; var NotEqualStencilFunc = 517; var GreaterEqualStencilFunc = 518; var AlwaysStencilFunc = 519; var StaticDrawUsage = 35044; var DynamicDrawUsage = 35048; var StreamDrawUsage = 35040; var StaticReadUsage = 35045; var DynamicReadUsage = 35049; var StreamReadUsage = 35041; var StaticCopyUsage = 35046; var DynamicCopyUsage = 35050; var StreamCopyUsage = 35042; var GLSL1 = "100"; var GLSL3 = "300 es"; /** * https://github.com/mrdoob/eventdispatcher.js/ */ function EventDispatcher() {} Object.assign( EventDispatcher.prototype, { addEventListener: function ( type, listener ) { if ( this._listeners === undefined ) { this._listeners = {}; } var listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } }, hasEventListener: function ( type, listener ) { if ( this._listeners === undefined ) { return false; } var listeners = this._listeners; return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; }, removeEventListener: function ( type, listener ) { if ( this._listeners === undefined ) { return; } var listeners = this._listeners; var listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { var index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } }, dispatchEvent: function ( event ) { if ( this._listeners === undefined ) { return; } var listeners = this._listeners; var listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; // Make a copy, in case listeners are removed while iterating. var array = listenerArray.slice( 0 ); for ( var i = 0, l = array.length; i < l; i ++ ) { array[ i ].call( this, event ); } } } } ); var _lut = []; for ( var i = 0; i < 256; i ++ ) { _lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 ); } var _seed = 1234567; var MathUtils = { DEG2RAD: Math.PI / 180, RAD2DEG: 180 / Math.PI, generateUUID: function () { // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 var d0 = Math.random() * 0xffffffff | 0; var d1 = Math.random() * 0xffffffff | 0; var d2 = Math.random() * 0xffffffff | 0; var d3 = Math.random() * 0xffffffff | 0; var uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; // .toUpperCase() here flattens concatenated strings to save heap memory space. return uuid.toUpperCase(); }, clamp: function ( value, min, max ) { return Math.max( min, Math.min( max, value ) ); }, // compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation euclideanModulo: function ( n, m ) { return ( ( n % m ) + m ) % m; }, // Linear mapping from range to range mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, // https://en.wikipedia.org/wiki/Linear_interpolation lerp: function ( x, y, t ) { return ( 1 - t ) * x + t * y; }, // http://en.wikipedia.org/wiki/Smoothstep smoothstep: function ( x, min, max ) { if ( x <= min ) { return 0; } if ( x >= max ) { return 1; } x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); }, smootherstep: function ( x, min, max ) { if ( x <= min ) { return 0; } if ( x >= max ) { return 1; } x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); }, // Random integer from interval randInt: function ( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); }, // Random float from interval randFloat: function ( low, high ) { return low + Math.random() * ( high - low ); }, // Random float from <-range/2, range/2> interval randFloatSpread: function ( range ) { return range * ( 0.5 - Math.random() ); }, // Deterministic pseudo-random float in the interval [ 0, 1 ] seededRandom: function ( s ) { if ( s !== undefined ) { _seed = s % 2147483647; } // Park-Miller algorithm _seed = _seed * 16807 % 2147483647; return ( _seed - 1 ) / 2147483646; }, degToRad: function ( degrees ) { return degrees * MathUtils.DEG2RAD; }, radToDeg: function ( radians ) { return radians * MathUtils.RAD2DEG; }, isPowerOfTwo: function ( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; }, ceilPowerOfTwo: function ( value ) { return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) ); }, floorPowerOfTwo: function ( value ) { return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) ); }, setQuaternionFromProperEuler: function ( q, a, b, c, order ) { // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles // rotations are applied to the axes in the order specified by 'order' // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' // angles are in radians var cos = Math.cos; var sin = Math.sin; var c2 = cos( b / 2 ); var s2 = sin( b / 2 ); var c13 = cos( ( a + c ) / 2 ); var s13 = sin( ( a + c ) / 2 ); var c1_3 = cos( ( a - c ) / 2 ); var s1_3 = sin( ( a - c ) / 2 ); var c3_1 = cos( ( c - a ) / 2 ); var s3_1 = sin( ( c - a ) / 2 ); switch ( order ) { case 'XYX': q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 ); break; case 'YZY': q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 ); break; case 'ZXZ': q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 ); break; case 'XZX': q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 ); break; case 'YXY': q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 ); break; case 'ZYZ': q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 ); break; default: console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order ); } } }; var Vector2 = function Vector2( x, y ) { if ( x === void 0 ) x = 0; if ( y === void 0 ) y = 0; Object.defineProperty( this, 'isVector2', { value: true } ); this.x = x; this.y = y; }; var prototypeAccessors = { width: { configurable: true },height: { configurable: true } }; prototypeAccessors.width.get = function () { return this.x; }; prototypeAccessors.width.set = function ( value ) { this.x = value; }; prototypeAccessors.height.get = function () { return this.y; }; prototypeAccessors.height.set = function ( value ) { this.y = value; }; Vector2.prototype.set = function set ( x, y ) { this.x = x; this.y = y; return this; }; Vector2.prototype.setScalar = function setScalar ( scalar ) { this.x = scalar; this.y = scalar; return this; }; Vector2.prototype.setX = function setX ( x ) { this.x = x; return this; }; Vector2.prototype.setY = function setY ( y ) { this.y = y; return this; }; Vector2.prototype.setComponent = function setComponent ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; }; Vector2.prototype.getComponent = function getComponent ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } }; Vector2.prototype.clone = function clone () { return new this.constructor( this.x, this.y ); }; Vector2.prototype.copy = function copy ( v ) { this.x = v.x; this.y = v.y; return this; }; Vector2.prototype.add = function add ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; return this; }; Vector2.prototype.addScalar = function addScalar ( s ) { this.x += s; this.y += s; return this; }; Vector2.prototype.addVectors = function addVectors ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; }; Vector2.prototype.addScaledVector = function addScaledVector ( v, s ) { this.x += v.x * s; this.y += v.y * s; return this; }; Vector2.prototype.sub = function sub ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; return this; }; Vector2.prototype.subScalar = function subScalar ( s ) { this.x -= s; this.y -= s; return this; }; Vector2.prototype.subVectors = function subVectors ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; }; Vector2.prototype.multiply = function multiply ( v ) { this.x *= v.x; this.y *= v.y; return this; }; Vector2.prototype.multiplyScalar = function multiplyScalar ( scalar ) { this.x *= scalar; this.y *= scalar; return this; }; Vector2.prototype.divide = function divide ( v ) { this.x /= v.x; this.y /= v.y; return this; }; Vector2.prototype.divideScalar = function divideScalar ( scalar ) { return this.multiplyScalar( 1 / scalar ); }; Vector2.prototype.applyMatrix3 = function applyMatrix3 ( m ) { var x = this.x, y = this.y; var e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ]; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ]; return this; }; Vector2.prototype.min = function min ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); return this; }; Vector2.prototype.max = function max ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); return this; }; Vector2.prototype.clamp = function clamp ( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); return this; }; Vector2.prototype.clampScalar = function clampScalar ( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); return this; }; Vector2.prototype.clampLength = function clampLength ( min, max ) { var length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); }; Vector2.prototype.floor = function floor () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; }; Vector2.prototype.ceil = function ceil () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; }; Vector2.prototype.round = function round () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; }; Vector2.prototype.roundToZero = function roundToZero () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); return this; }; Vector2.prototype.negate = function negate () { this.x = - this.x; this.y = - this.y; return this; }; Vector2.prototype.dot = function dot ( v ) { return this.x * v.x + this.y * v.y; }; Vector2.prototype.cross = function cross ( v ) { return this.x * v.y - this.y * v.x; }; Vector2.prototype.lengthSq = function lengthSq () { return this.x * this.x + this.y * this.y; }; Vector2.prototype.length = function length () { return Math.sqrt( this.x * this.x + this.y * this.y ); }; Vector2.prototype.manhattanLength = function manhattanLength () { return Math.abs( this.x ) + Math.abs( this.y ); }; Vector2.prototype.normalize = function normalize () { return this.divideScalar( this.length() || 1 ); }; Vector2.prototype.angle = function angle () { // computes the angle in radians with respect to the positive x-axis var angle = Math.atan2( - this.y, - this.x ) + Math.PI; return angle; }; Vector2.prototype.distanceTo = function distanceTo ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }; Vector2.prototype.distanceToSquared = function distanceToSquared ( v ) { var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; }; Vector2.prototype.manhattanDistanceTo = function manhattanDistanceTo ( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); }; Vector2.prototype.setLength = function setLength ( length ) { return this.normalize().multiplyScalar( length ); }; Vector2.prototype.lerp = function lerp ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; }; Vector2.prototype.lerpVectors = function lerpVectors ( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; return this; }; Vector2.prototype.equals = function equals ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); }; Vector2.prototype.fromArray = function fromArray ( array, offset ) { if ( offset === undefined ) { offset = 0; } this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; }; Vector2.prototype.toArray = function toArray ( array, offset ) { if ( array === undefined ) { array = []; } if ( offset === undefined ) { offset = 0; } array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; }; Vector2.prototype.fromBufferAttribute = function fromBufferAttribute ( attribute, index, offset ) { if ( offset !== undefined ) { console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' ); } this.x = attribute.getX( index ); this.y = attribute.getY( index ); return this; }; Vector2.prototype.rotateAround = function rotateAround ( center, angle ) { var c = Math.cos( angle ), s = Math.sin( angle ); var x = this.x - center.x; var y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; }; Vector2.prototype.random = function random () { this.x = Math.random(); this.y = Math.random(); return this; }; Object.defineProperties( Vector2.prototype, prototypeAccessors ); var Matrix3 = function Matrix3() { Object.defineProperty( this, 'isMatrix3', { value: true } ); this.elements = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( arguments.length > 0 ) { console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' ); } }; Matrix3.prototype.set = function set ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { var te = this.elements; te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; return this; }; Matrix3.prototype.identity = function identity () { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; }; Matrix3.prototype.clone = function clone () { return new this.constructor().fromArray( this.elements ); }; Matrix3.prototype.copy = function copy ( m ) { var te = this.elements; var me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; return this; }; Matrix3.prototype.extractBasis = function extractBasis ( xAxis, yAxis, zAxis ) { xAxis.setFromMatrix3Column( this, 0 ); yAxis.setFromMatrix3Column( this, 1 ); zAxis.setFromMatrix3Column( this, 2 ); return this; }; Matrix3.prototype.setFromMatrix4 = function setFromMatrix4 ( m ) { var me = m.elements; this.set( me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ] ); return this; }; Matrix3.prototype.multiply = function multiply ( m ) { return this.multiplyMatrices( this, m ); }; Matrix3.prototype.premultiply = function premultiply ( m ) { return this.multiplyMatrices( m, this ); }; Matrix3.prototype.multiplyMatrices = function multiplyMatrices ( a, b ) { var ae = a.elements; var be = b.elements; var te = this.elements; var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; return this; }; Matrix3.prototype.multiplyScalar = function multiplyScalar ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; }; Matrix3.prototype.determinant = function determinant () { var te = this.elements; var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; }; Matrix3.prototype.getInverse = function getInverse ( matrix, throwOnDegenerate ) { if ( throwOnDegenerate !== undefined ) { console.warn( "THREE.Matrix3: .getInverse() can no longer be configured to throw on degenerate." ); } var me = matrix.elements, te = this.elements, n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ], n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if ( det === 0 ) { return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); } var detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; te[ 3 ] = t12 * detInv; te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; te[ 6 ] = t13 * detInv; te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; return this; }; Matrix3.prototype.transpose = function transpose () { var tmp; var m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; }; Matrix3.prototype.getNormalMatrix = function getNormalMatrix ( matrix4 ) { return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose(); }; Matrix3.prototype.transposeIntoArray = function transposeIntoArray ( r ) { var m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; }; Matrix3.prototype.setUvTransform = function setUvTransform ( tx, ty, sx, sy, rotation, cx, cy ) { var c = Math.cos( rotation ); var s = Math.sin( rotation ); this.set( sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, 0, 0, 1 ); }; Matrix3.prototype.scale = function scale ( sx, sy ) { var te = this.elements; te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx; te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy; return this; }; Matrix3.prototype.rotate = function rotate ( theta ) { var c = Math.cos( theta ); var s = Math.sin( theta ); var te = this.elements; var a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ]; var a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ]; te[ 0 ] = c * a11 + s * a21; te[ 3 ] = c * a12 + s * a22; te[ 6 ] = c * a13 + s * a23; te[ 1 ] = - s * a11 + c * a21; te[ 4 ] = - s * a12 + c * a22; te[ 7 ] = - s * a13 + c * a23; return this; }; Matrix3.prototype.translate = function translate ( tx, ty ) { var te = this.elements; te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ]; te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ]; return this; }; Matrix3.prototype.equals = function equals ( matrix ) { var te = this.elements; var me = matrix.elements; for ( var i = 0; i < 9; i ++ ) { if ( te[ i ] !== me[ i ] ) { return false; } } return true; }; Matrix3.prototype.fromArray = function fromArray ( array, offset ) { if ( offset === undefined ) { offset = 0; } for ( var i = 0; i < 9; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; }; Matrix3.prototype.toArray = function toArray ( array, offset ) { if ( array === undefined ) { array = []; } if ( offset === undefined ) { offset = 0; } var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; }; var _canvas; var ImageUtils = { getDataURL: function ( image ) { if ( /^data:/i.test( image.src ) ) { return image.src; } if ( typeof HTMLCanvasElement == 'undefined' ) { return image.src; } var canvas; if ( image instanceof HTMLCanvasElement ) { canvas = image; } else { if ( _canvas === undefined ) { _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); } _canvas.width = image.width; _canvas.height = image.height; var context = _canvas.getContext( '2d' ); if ( image instanceof ImageData ) { context.putImageData( image, 0, 0 ); } else { context.drawImage( image, 0, 0, image.width, image.height ); } canvas = _canvas; } if ( canvas.width > 2048 || canvas.height > 2048 ) { return canvas.toDataURL( 'image/jpeg', 0.6 ); } else { return canvas.toDataURL( 'image/png' ); } } }; var textureId = 0; function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { Object.defineProperty( this, 'id', { value: textureId ++ } ); this.uuid = MathUtils.generateUUID(); this.name = ''; this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE; this.mipmaps = []; this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING; this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping; this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping; this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; this.minFilter = minFilter !== undefined ? minFilter : LinearMipmapLinearFilter; this.anisotropy = anisotropy !== undefined ? anisotropy : 1; this.format = format !== undefined ? format : RGBAFormat; this.internalFormat = null; this.type = type !== undefined ? type : UnsignedByteType; this.offset = new Vector2( 0, 0 ); this.repeat = new Vector2( 1, 1 ); this.center = new Vector2( 0, 0 ); this.rotation = 0; this.matrixAutoUpdate = true; this.matrix = new Matrix3(); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding !== undefined ? encoding : LinearEncoding; this.version = 0; this.onUpdate = null; } Texture.DEFAULT_IMAGE = undefined; Texture.DEFAULT_MAPPING = UVMapping; Texture.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { constructor: Texture, isTexture: true, updateMatrix: function () { this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y ); }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.name = source.name; this.image = source.image; this.mipmaps = source.mipmaps.slice( 0 ); this.mapping = source.mapping; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.internalFormat = source.internalFormat; this.type = source.type; this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.center.copy( source.center ); this.rotation = source.rotation; this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrix.copy( source.matrix ); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.encoding = source.encoding; return this; }, toJSON: function ( meta ) { var isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) { return meta.textures[ this.uuid ]; } var output = { metadata: { version: 4.5, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, mapping: this.mapping, repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], center: [ this.center.x, this.center.y ], rotation: this.rotation, wrap: [ this.wrapS, this.wrapT ], format: this.format, type: this.type, encoding: this.encoding, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY, premultiplyAlpha: this.premultiplyAlpha, unpackAlignment: this.unpackAlignment }; if ( this.image !== undefined ) { // TODO: Move to THREE.Image var image = this.image; if ( image.uuid === undefined ) { image.uuid = MathUtils.generateUUID(); // UGH } if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) { var url; if ( Array.isArray( image ) ) { // process array of images e.g. CubeTexture url = []; for ( var i = 0, l = image.length; i < l; i ++ ) { url.push( ImageUtils.getDataURL( image[ i ] ) ); } } else { // process single image url = ImageUtils.getDataURL( image ); } meta.images[ image.uuid ] = { uuid: image.uuid, url: url }; } output.image = image.uuid; } if ( ! isRootObject ) { meta.textures[ this.uuid ] = output; } return output; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); }, transformUv: function ( uv ) { if ( this.mapping !== UVMapping ) { return uv; } uv.applyMatrix3( this.matrix ); if ( uv.x < 0 || uv.x > 1 ) { switch ( this.wrapS ) { case RepeatWrapping: uv.x = uv.x - Math.floor( uv.x ); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { uv.x = Math.ceil( uv.x ) - uv.x; } else { uv.x = uv.x - Math.floor( uv.x ); } break; } } if ( uv.y < 0 || uv.y > 1 ) { switch ( this.wrapT ) { case RepeatWrapping: uv.y = uv.y - Math.floor( uv.y ); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { uv.y = Math.ceil( uv.y ) - uv.y; } else { uv.y = uv.y - Math.floor( uv.y ); } break; } } if ( this.flipY ) { uv.y = 1 - uv.y; } return uv; } } ); Object.defineProperty( Texture.prototype, "needsUpdate", { set: function ( value ) { if ( value === true ) { this.version ++; } } } ); var Vector4 = function Vector4( x, y, z, w ) { if ( x === void 0 ) x = 0; if ( y === void 0 ) y = 0; if ( z === void 0 ) z = 0; if ( w === void 0 ) w = 1; Object.defineProperty( this, 'isVector4', { value: true } ); this.x = x; this.y = y; this.z = z; this.w = w; }; var prototypeAccessors$1 = { width: { configurable: true },height: { configurable: true } }; prototypeAccessors$1.width.get = function () { return this.z; }; prototypeAccessors$1.width.set = function ( value ) { this.z = value; }; prototypeAccessors$1.height.get = function () { return this.w; }; prototypeAccessors$1.height.set = function ( value ) { this.w = value; }; Vector4.prototype.set = function set ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }; Vector4.prototype.setScalar = function setScalar ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; }; Vector4.prototype.setX = function setX ( x ) { this.x = x; return this; }; Vector4.prototype.setY = function setY ( y ) { this.y = y; return this; }; Vector4.prototype.setZ = function setZ ( z ) { this.z = z; return this; }; Vector4.prototype.setW = function setW ( w ) { this.w = w; return this; }; Vector4.prototype.setComponent = function setComponent ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; }; Vector4.prototype.getComponent = function getComponent ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } }; Vector4.prototype.clone = function clone () { return new this.constructor( this.x, this.y, this.z, this.w ); }; Vector4.prototype.copy = function copy ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; }; Vector4.prototype.add = function add ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; }; Vector4.prototype.addScalar = function addScalar ( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; }; Vector4.prototype.addVectors = function addVectors ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; }; Vector4.prototype.addScaledVector = function addScaledVector ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; }; Vector4.prototype.sub = function sub ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; }; Vector4.prototype.subScalar = function subScalar ( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; }; Vector4.prototype.subVectors = function subVectors ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; }; Vector4.prototype.multiplyScalar = function multiplyScalar ( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; }; Vector4.prototype.applyMatrix4 = function applyMatrix4 ( m ) { var x = this.x, y = this.y, z = this.z, w = this.w; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; }; Vector4.prototype.divideScalar = function divideScalar ( scalar ) { return this.multiplyScalar( 1 / scalar ); }; Vector4.prototype.setAxisAngleFromQuaternion = function setAxisAngleFromQuaternion ( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); var s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; }; Vector4.prototype.setAxisAngleFromRotationMatrix = function setAxisAngleFromRotationMatrix ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var angle, x, y, z; // variables for result var epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; var xx = ( m11 + 1 ) / 2; var yy = ( m22 + 1 ) / 2; var zz = ( m33 + 1 ) / 2; var xy = ( m12 + m21 ) / 4; var xz = ( m13 + m31 ) / 4; var yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) { s = 1; } // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; }; Vector4.prototype.min = function min ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; }; Vector4.prototype.max = function max ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; }; Vector4.prototype.clamp = function clamp ( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) ); return this; }; Vector4.prototype.clampScalar = function clampScalar ( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); this.w = Math.max( minVal, Math.min( maxVal, this.w ) ); return this; }; Vector4.prototype.clampLength = function clampLength ( min, max ) { var length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); }; Vector4.prototype.floor = function floor () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; }; Vector4.prototype.ceil = function ceil () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; }; Vector4.prototype.round = function round () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; }; Vector4.prototype.roundToZero = function roundToZero () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); return this; }; Vector4.prototype.negate = function negate () { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; }; Vector4.prototype.dot = function dot ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; }; Vector4.prototype.lengthSq = function lengthSq () { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; }; Vector4.prototype.length = function length () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }; Vector4.prototype.manhattanLength = function manhattanLength () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); }; Vector4.prototype.normalize = function normalize () { return this.divideScalar( this.length() || 1 ); }; Vector4.prototype.setLength = function setLength ( length ) { return this.normalize().multiplyScalar( length ); }; Vector4.prototype.lerp = function lerp ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; }; Vector4.prototype.lerpVectors = function lerpVectors ( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; this.w = v1.w + ( v2.w - v1.w ) * alpha; return this; }; Vector4.prototype.equals = function equals ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); }; Vector4.prototype.fromArray = function fromArray ( array, offset ) { if ( offset === undefined ) { offset = 0; } this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; }; Vector4.prototype.toArray = function toArray ( array, offset ) { if ( array === undefined ) { array = []; } if ( offset === undefined ) { offset = 0; } array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; }; Vector4.prototype.fromBufferAttribute = function fromBufferAttribute ( attribute, index, offset ) { if ( offset !== undefined ) { console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' ); } this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); this.w = attribute.getW( index ); return this; }; Vector4.prototype.random = function random () { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); this.w = Math.random(); return this; }; Object.defineProperties( Vector4.prototype, prototypeAccessors$1 ); /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ function WebGLRenderTarget( width, height, options ) { this.width = width; this.height = height; this.scissor = new Vector4( 0, 0, width, height ); this.scissorTest = false; this.viewport = new Vector4( 0, 0, width, height ); options = options || {}; this.texture = new Texture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding ); this.texture.image = {}; this.texture.image.width = width; this.texture.image.height = height; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false; this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; } WebGLRenderTarget.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { constructor: WebGLRenderTarget, isWebGLRenderTarget: true, setSize: function ( width, height ) { if ( this.width !== width || this.height !== height ) { this.width = width; this.height = height; this.texture.image.width = width; this.texture.image.height = height; this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.width = source.width; this.height = source.height; this.viewport.copy( source.viewport ); this.texture = source.texture.clone(); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); function WebGLMultisampleRenderTarget( width, height, options ) { WebGLRenderTarget.call( this, width, height, options ); this.samples = 4; } WebGLMultisampleRenderTarget.prototype = Object.assign( Object.create( WebGLRenderTarget.prototype ), { constructor: WebGLMultisampleRenderTarget, isWebGLMultisampleRenderTarget: true, copy: function ( source ) { WebGLRenderTarget.prototype.copy.call( this, source ); this.samples = source.samples; return this; } } ); var Quaternion = function Quaternion( x, y, z, w ) { if ( x === void 0 ) x = 0; if ( y === void 0 ) y = 0; if ( z === void 0 ) z = 0; if ( w === void 0 ) w = 1; Object.defineProperty( this, 'isQuaternion', { value: true } ); this._x = x; this._y = y; this._z = z; this._w = w; }; var prototypeAccessors$2 = { x: { configurable: true },y: { configurable: true },z: { configurable: true },w: { configurable: true } }; Quaternion.slerp = function slerp ( qa, qb, qm, t ) { return qm.copy( qa ).slerp( qb, t ); }; Quaternion.slerpFlat = function slerpFlat ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation var x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ]; var x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { var s = 1 - t; var cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { var sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } var tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; }; Quaternion.multiplyQuaternionsFlat = function multiplyQuaternionsFlat ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) { var x0 = src0[ srcOffset0 ]; var y0 = src0[ srcOffset0 + 1 ]; var z0 = src0[ srcOffset0 + 2 ]; var w0 = src0[ srcOffset0 + 3 ]; var x1 = src1[ srcOffset1 ]; var y1 = src1[ srcOffset1 + 1 ]; var z1 = src1[ srcOffset1 + 2 ]; var w1 = src1[ srcOffset1 + 3 ]; dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; return dst; }; prototypeAccessors$2.x.get = function () { return this._x; }; prototypeAccessors$2.x.set = function ( value ) { this._x = value; this._onChangeCallback(); }; prototypeAccessors$2.y.get = function () { return this._y; }; prototypeAccessors$2.y.set = function ( value ) { this._y = value; this._onChangeCallback(); }; prototypeAccessors$2.z.get = function () { return this._z; }; prototypeAccessors$2.z.set = function ( value ) { this._z = value; this._onChangeCallback(); }; prototypeAccessors$2.w.get = function () { return this._w; }; prototypeAccessors$2.w.set = function ( value ) { this._w = value; this._onChangeCallback(); }; Quaternion.prototype.set = function set ( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this._onChangeCallback(); return this; }; Quaternion.prototype.clone = function clone () { return new this.constructor( this._x, this._y, this._z, this._w ); }; Quaternion.prototype.copy = function copy ( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this._onChangeCallback(); return this; }; Quaternion.prototype.setFromEuler = function setFromEuler ( euler, update ) { if ( ! ( euler && euler.isEuler ) ) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } var x = euler._x, y = euler._y, z = euler._z, order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ //content/SpinCalc.m var cos = Math.cos; var sin = Math.sin; var c1 = cos( x / 2 ); var c2 = cos( y / 2 ); var c3 = cos( z / 2 ); var s1 = sin( x / 2 ); var s2 = sin( y / 2 ); var s3 = sin( z / 2 ); switch ( order ) { case 'XYZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'YXZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'ZXY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'ZYX': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'YZX': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'XZY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; default: console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order ); } if ( update !== false ) { this._onChangeCallback(); } return this; }; Quaternion.prototype.setFromAxisAngle = function setFromAxisAngle ( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this._onChangeCallback(); return this; }; Quaternion.prototype.setFromRotationMatrix = function setFromRotationMatrix ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33; if ( trace > 0 ) { var s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { var s$1 = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s$1; this._x = 0.25 * s$1; this._y = ( m12 + m21 ) / s$1; this._z = ( m13 + m31 ) / s$1; } else if ( m22 > m33 ) { var s$2 = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s$2; this._x = ( m12 + m21 ) / s$2; this._y = 0.25 * s$2; this._z = ( m23 + m32 ) / s$2; } else { var s$3 = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s$3; this._x = ( m13 + m31 ) / s$3; this._y = ( m23 + m32 ) / s$3; this._z = 0.25 * s$3; } this._onChangeCallback(); return this; }; Quaternion.prototype.setFromUnitVectors = function setFromUnitVectors ( vFrom, vTo ) { // assumes direction vectors vFrom and vTo are normalized var EPS = 0.000001; var r = vFrom.dot( vTo ) + 1; if ( r < EPS ) { r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { this._x = - vFrom.y; this._y = vFrom.x; this._z = 0; this._w = r; } else { this._x = 0; this._y = - vFrom.z; this._z = vFrom.y; this._w = r; } } else { // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; this._w = r; } return this.normalize(); }; Quaternion.prototype.angleTo = function angleTo ( q ) { return 2 * Math.acos( Math.abs( MathUtils.clamp( this.dot( q ), - 1, 1 ) ) ); }; Quaternion.prototype.rotateTowards = function rotateTowards ( q, step ) { var angle = this.angleTo( q ); if ( angle === 0 ) { return this; } var t = Math.min( 1, step / angle ); this.slerp( q, t ); return this; }; Quaternion.prototype.identity = function identity () { return this.set( 0, 0, 0, 1 ); }; Quaternion.prototype.inverse = function inverse () { // quaternion is assumed to have unit length return this.conjugate(); }; Quaternion.prototype.conjugate = function conjugate () { this._x *= - 1; this._y *= - 1; this._z *= - 1; this._onChangeCallback(); return this; }; Quaternion.prototype.dot = function dot ( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; }; Quaternion.prototype.lengthSq = function lengthSq () { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; }; Quaternion.prototype.length = function length () { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); }; Quaternion.prototype.normalize = function normalize () { var l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this._onChangeCallback(); return this; }; Quaternion.prototype.multiply = function multiply ( q, p ) { if ( p !== undefined ) { console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); return this.multiplyQuaternions( q, p ); } return this.multiplyQuaternions( this, q ); }; Quaternion.prototype.premultiply = function premultiply ( q ) { return this.multiplyQuaternions( q, this ); }; Quaternion.prototype.multiplyQuaternions = function multiplyQuaternions ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this._onChangeCallback(); return this; }; Quaternion.prototype.slerp = function slerp ( qb, t ) { if ( t === 0 ) { return this; } if ( t === 1 ) { return this.copy( qb ); } var x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } var sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; if ( sqrSinHalfTheta <= Number.EPSILON ) { var s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z; this.normalize(); this._onChangeCallback(); return this; } var sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this._onChangeCallback(); return this; }; Quaternion.prototype.equals = function equals ( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); }; Quaternion.prototype.fromArray = function fromArray ( array, offset ) { if ( offset === undefined ) { offset = 0; } this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this._onChangeCallback(); return this; }; Quaternion.prototype.toArray = function toArray ( array, offset ) { if ( array === undefined ) { array = []; } if ( offset === undefined ) { offset = 0; } array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; }; Quaternion.prototype.fromBufferAttribute = function fromBufferAttribute ( attribute, index ) { this._x = attribute.getX( index ); this._y = attribute.getY( index ); this._z = attribute.getZ( index ); this._w = attribute.getW( index ); return this; }; Quaternion.prototype._onChange = function _onChange ( callback ) { this._onChangeCallback = callback; return this; }; Quaternion.prototype._onChangeCallback = function _onChangeCallback () {}; Object.defineProperties( Quaternion.prototype, prototypeAccessors$2 ); var Vector3 = function Vector3( x, y, z ) { if ( x === void 0 ) x = 0; if ( y === void 0 ) y = 0; if ( z === void 0 ) z = 0; Object.defineProperty( this, 'isVector3', { value: true } ); this.x = x; this.y = y; this.z = z; }; Vector3.prototype.set = function set ( x, y, z ) { if ( z === undefined ) { z = this.z; } // sprite.scale.set(x,y) this.x = x; this.y = y; this.z = z; return this; }; Vector3.prototype.setScalar = function setScalar ( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; }; Vector3.prototype.setX = function setX ( x ) { this.x = x; return this; }; Vector3.prototype.setY = function setY ( y ) { this.y = y; return this; }; Vector3.prototype.setZ = function setZ ( z ) { this.z = z; return this; }; Vector3.prototype.setComponent = function setComponent ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; }; Vector3.prototype.getComponent = function getComponent ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } }; Vector3.prototype.clone = function clone () { return new this.constructor( this.x, this.y, this.z ); }; Vector3.prototype.copy = function copy ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; }; Vector3.prototype.add = function add ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; return this; }; Vector3.prototype.addScalar = function addScalar ( s ) { this.x += s; this.y += s; this.z += s; return this; }; Vector3.prototype.addVectors = function addVectors ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; }; Vector3.prototype.addScaledVector = function addScaledVector ( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; }; Vector3.prototype.sub = function sub ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; }; Vector3.prototype.subScalar = function subScalar ( s ) { this.x -= s; this.y -= s; this.z -= s; return this; }; Vector3.prototype.subVectors = function subVectors ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; }; Vector3.prototype.multiply = function multiply ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); return this.multiplyVectors( v, w ); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; }; Vector3.prototype.multiplyScalar = function multiplyScalar ( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; }; Vector3.prototype.multiplyVectors = function multiplyVectors ( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; }; Vector3.prototype.applyEuler = function applyEuler ( euler ) { if ( ! ( euler && euler.isEuler ) ) { console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' ); } return this.applyQuaternion( _quaternion.setFromEuler( euler ) ); }; Vector3.prototype.applyAxisAngle = function applyAxisAngle ( axis, angle ) { return this.applyQuaternion( _quaternion.setFromAxisAngle( axis, angle ) ); }; Vector3.prototype.applyMatrix3 = function applyMatrix3 ( m ) { var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; }; Vector3.prototype.applyNormalMatrix = function applyNormalMatrix ( m ) { return this.applyMatrix3( m ).normalize(); }; Vector3.prototype.applyMatrix4 = function applyMatrix4 ( m ) { var x = this.x, y = this.y, z = this.z; var e = m.elements; var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; return this; }; Vector3.prototype.applyQuaternion = function applyQuaternion ( q ) { var x = this.x, y = this.y, z = this.z; var qx = q.x, qy = q.y, qz = q.z, qw = q.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y; var iy = qw * y + qz * x - qx * z; var iz = qw * z + qx * y - qy * x; var iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; }; Vector3.prototype.project = function project ( camera ) { return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); }; Vector3.prototype.unproject = function unproject ( camera ) { return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); }; Vector3.prototype.transformDirection = function transformDirection ( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return this.normalize(); }; Vector3.prototype.divide = function divide ( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; }; Vector3.prototype.divideScalar = function divideScalar ( scalar ) { return this.multiplyScalar( 1 / scalar ); }; Vector3.prototype.min = function min ( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; }; Vector3.prototype.max = function max ( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; }; Vector3.prototype.clamp = function clamp ( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; }; Vector3.prototype.clampScalar = function clampScalar ( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); return this; }; Vector3.prototype.clampLength = function clampLength ( min, max ) { var length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); }; Vector3.prototype.floor = function floor () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; }; Vector3.prototype.ceil = function ceil () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; }; Vector3.prototype.round = function round () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; }; Vector3.prototype.roundToZero = function roundToZero () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); return this; }; Vector3.prototype.negate = function negate () { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; }; Vector3.prototype.dot = function dot ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; }; // TODO lengthSquared? Vector3.prototype.lengthSq = function lengthSq () { return this.x * this.x + this.y * this.y + this.z * this.z; }; Vector3.prototype.length = function length () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); }; Vector3.prototype.manhattanLength = function manhattanLength () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); }; Vector3.prototype.normalize = function normalize () { return this.divideScalar( this.length() || 1 ); }; Vector3.prototype.setLength = function setLength ( length ) { return this.normalize().multiplyScalar( length ); }; Vector3.prototype.lerp = function lerp ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; }; Vector3.prototype.lerpVectors = function lerpVectors ( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; return this; }; Vector3.prototype.cross = function cross ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); return this.crossVectors( v, w ); } return this.crossVectors( this, v ); }; Vector3.prototype.crossVectors = function crossVectors ( a, b ) { var ax = a.x, ay = a.y, az = a.z; var bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; }; Vector3.prototype.projectOnVector = function projectOnVector ( v ) { var denominator = v.lengthSq(); if ( denominator === 0 ) { return this.set( 0, 0, 0 ); } var scalar = v.dot( this ) / denominator; return this.copy( v ).multiplyScalar( scalar ); }; Vector3.prototype.projectOnPlane = function projectOnPlane ( planeNormal ) { _vector.copy( this ).projectOnVector( planeNormal ); return this.sub( _vector ); }; Vector3.prototype.reflect = function reflect ( normal ) { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length return this.sub( _vector.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); }; Vector3.prototype.angleTo = function angleTo ( v ) { var denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); if ( denominator === 0 ) { return Math.PI / 2; } var theta = this.dot( v ) / denominator; // clamp, to handle numerical problems return Math.acos( MathUtils.clamp( theta, - 1, 1 ) ); }; Vector3.prototype.distanceTo = function distanceTo ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }; Vector3.prototype.distanceToSquared = function distanceToSquared ( v ) { var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; }; Vector3.prototype.manhattanDistanceTo = function manhattanDistanceTo ( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); }; Vector3.prototype.setFromSpherical = function setFromSpherical ( s ) { return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); }; Vector3.prototype.setFromSphericalCoords = function setFromSphericalCoords ( radius, phi, theta ) { var sinPhiRadius = Math.sin( phi ) * radius; this.x = sinPhiRadius * Math.sin( theta ); this.y = Math.cos( phi ) * radius; this.z = sinPhiRadius * Math.cos( theta ); return this; }; Vector3.prototype.setFromCylindrical = function setFromCylindrical ( c ) { return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); }; Vector3.prototype.setFromCylindricalCoords = function setFromCylindricalCoords ( radius, theta, y ) { this.x = radius * Math.sin( theta ); this.y = y; this.z = radius * Math.cos( theta ); return this; }; Vector3.prototype.setFromMatrixPosition = function setFromMatrixPosition ( m ) { var e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; return this; }; Vector3.prototype.setFromMatrixScale = function setFromMatrixScale ( m ) { var sx = this.setFromMatrixColumn( m, 0 ).length(); var sy = this.setFromMatrixColumn( m, 1 ).length(); var sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; }; Vector3.prototype.setFromMatrixColumn = function setFromMatrixColumn ( m, index ) { return this.fromArray( m.elements, index * 4 ); }; Vector3.prototype.setFromMatrix3Column = function setFromMatrix3Column ( m, index ) { return this.fromArray( m.elements, index * 3 ); }; Vector3.prototype.equals = function equals ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); }; Vector3.prototype.fromArray = function fromArray ( array, offset ) { if ( offset === undefined ) { offset = 0; } this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; }; Vector3.prototype.toArray = function toArray ( array, offset ) { if ( array === undefined ) { array = []; } if ( offset === undefined ) { offset = 0; } array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; }; Vector3.prototype.fromBufferAttribute = function fromBufferAttribute ( attribute, index, offset ) { if ( offset !== undefined ) { console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' ); } this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); return this; }; Vector3.prototype.random = function random () { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; }; var _vector = new Vector3(); var _quaternion = new Quaternion(); var Box3 = function Box3( min, max ) { Object.defineProperty( this, 'isBox3', { value: true } ); this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity ); }; Box3.prototype.set = function set ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }; Box3.prototype.setFromArray = function setFromArray ( array ) { var minX = + Infinity; var minY = + Infinity; var minZ = + Infinity; var maxX = - Infinity; var maxY = - Infinity; var maxZ = - Infinity; for ( var i = 0, l = array.length; i < l; i += 3 ) { var x = array[ i ]; var y = array[ i + 1 ]; var z = array[ i + 2 ]; if ( x < minX ) { minX = x; } if ( y < minY ) { minY = y; } if ( z < minZ ) { minZ = z; } if ( x > maxX ) { maxX = x; } if ( y > maxY ) { maxY = y; } if ( z > maxZ ) { maxZ = z; } } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; }; Box3.prototype.setFromBufferAttribute = function setFromBufferAttribute ( attribute ) { var minX = + Infinity; var minY = + Infinity; var minZ = + Infinity; var maxX = - Infinity; var maxY = - Infinity; var maxZ = - Infinity; for ( var i = 0, l = attribute.count; i < l; i ++ ) { var x = attribute.getX( i ); var y = attribute.getY( i ); var z = attribute.getZ( i ); if ( x < minX ) { minX = x; } if ( y < minY ) { minY = y; } if ( z < minZ ) { minZ = z; } if ( x > maxX ) { maxX = x; } if ( y > maxY ) { maxY = y; } if ( z > maxZ ) { maxZ = z; } } this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ ); return this; }; Box3.prototype.setFromPoints = function setFromPoints ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }; Box3.prototype.setFromCenterAndSize = function setFromCenterAndSize ( center, size ) { var halfSize = _vector$1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; Box3.prototype.setFromObject = function setFromObject ( object ) { this.makeEmpty(); return this.expandByObject( object ); }; Box3.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Box3.prototype.copy = function copy ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }; Box3.prototype.makeEmpty = function makeEmpty () { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; }; Box3.prototype.isEmpty = function isEmpty () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); }; Box3.prototype.getCenter = function getCenter ( target ) { if ( target === undefined ) { console.warn( 'THREE.Box3: .getCenter() target is now required' ); target = new Vector3(); } return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }; Box3.prototype.getSize = function getSize ( target ) { if ( target === undefined ) { console.warn( 'THREE.Box3: .getSize() target is now required' ); target = new Vector3(); } return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min ); }; Box3.prototype.expandByPoint = function expandByPoint ( point ) { this.min.min( point ); this.max.max( point ); return this; }; Box3.prototype.expandByVector = function expandByVector ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }; Box3.prototype.expandByScalar = function expandByScalar ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }; Box3.prototype.expandByObject = function expandByObject ( object ) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms object.updateWorldMatrix( false, false ); var geometry = object.geometry; if ( geometry !== undefined ) { if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } _box.copy( geometry.boundingBox ); _box.applyMatrix4( object.matrixWorld ); this.union( _box ); } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { this.expandByObject( children[ i ] ); } return this; }; Box3.prototype.containsPoint = function containsPoint ( point ) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; }; Box3.prototype.containsBox = function containsBox ( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; }; Box3.prototype.getParameter = function getParameter ( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. if ( target === undefined ) { console.warn( 'THREE.Box3: .getParameter() target is now required' ); target = new Vector3(); } return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); }; Box3.prototype.intersectsBox = function intersectsBox ( box ) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; }; Box3.prototype.intersectsSphere = function intersectsSphere ( sphere ) { // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, _vector$1 ); // If that point is inside the sphere, the AABB and sphere intersect. return _vector$1.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); }; Box3.prototype.intersectsPlane = function intersectsPlane ( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. var min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= - plane.constant && max >= - plane.constant ); }; Box3.prototype.intersectsTriangle = function intersectsTriangle ( triangle ) { if ( this.isEmpty() ) { return false; } // compute box center and extents this.getCenter( _center ); _extents.subVectors( this.max, _center ); // translate triangle to aabb origin _v0.subVectors( triangle.a, _center ); _v1.subVectors( triangle.b, _center ); _v2.subVectors( triangle.c, _center ); // compute edge vectors for triangle _f0.subVectors( _v1, _v0 ); _f1.subVectors( _v2, _v1 ); _f2.subVectors( _v0, _v2 ); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) var axes = [ 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y, _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x, - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0 ]; if ( ! satForAxes( axes, _v0, _v1, _v2, _extents ) ) { return false; } // test 3 face normals from the aabb axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( ! satForAxes( axes, _v0, _v1, _v2, _extents ) ) { return false; } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors( _f0, _f1 ); axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ]; return satForAxes( axes, _v0, _v1, _v2, _extents ); }; Box3.prototype.clampPoint = function clampPoint ( point, target ) { if ( target === undefined ) { console.warn( 'THREE.Box3: .clampPoint() target is now required' ); target = new Vector3(); } return target.copy( point ).clamp( this.min, this.max ); }; Box3.prototype.distanceToPoint = function distanceToPoint ( point ) { var clampedPoint = _vector$1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; Box3.prototype.getBoundingSphere = function getBoundingSphere ( target ) { if ( target === undefined ) { console.error( 'THREE.Box3: .getBoundingSphere() target is now required' ); //target = new Sphere(); // removed to avoid cyclic dependency } this.getCenter( target.center ); target.radius = this.getSize( _vector$1 ).length() * 0.5; return target; }; Box3.prototype.intersect = function intersect ( box ) { this.min.max( box.min ); this.max.min( box.max ); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if ( this.isEmpty() ) { this.makeEmpty(); } return this; }; Box3.prototype.union = function union ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }; Box3.prototype.applyMatrix4 = function applyMatrix4 ( matrix ) { // transform of empty box is an empty box. if ( this.isEmpty() ) { return this; } // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.setFromPoints( _points ); return this; }; Box3.prototype.translate = function translate ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }; Box3.prototype.equals = function equals ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); }; function satForAxes( axes, v0, v1, v2, extents ) { for ( var i = 0, j = axes.length - 3; i <= j; i += 3 ) { _testAxis.fromArray( axes, i ); // project the aabb onto the seperating axis var r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z ); // project all 3 vertices of the triangle onto the seperating axis var p0 = v0.dot( _testAxis ); var p1 = v1.dot( _testAxis ); var p2 = v2.dot( _testAxis ); // actual test, basically see if either of the most extreme of the triangle points intersects r if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is seperating and we can exit return false; } } return true; } var _points = [ new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3() ]; var _vector$1 = new Vector3(); var _box = new Box3(); // triangle centered vertices var _v0 = new Vector3(); var _v1 = new Vector3(); var _v2 = new Vector3(); // triangle edge vectors var _f0 = new Vector3(); var _f1 = new Vector3(); var _f2 = new Vector3(); var _center = new Vector3(); var _extents = new Vector3(); var _triangleNormal = new Vector3(); var _testAxis = new Vector3(); var _box$1 = new Box3(); var Sphere = function Sphere( center, radius ) { this.center = ( center !== undefined ) ? center : new Vector3(); this.radius = ( radius !== undefined ) ? radius : - 1; }; Sphere.prototype.set = function set ( center, radius ) { this.center.copy( center ); this.radius = radius; return this; }; Sphere.prototype.setFromPoints = function setFromPoints ( points, optionalCenter ) { var center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { _box$1.setFromPoints( points ).getCenter( center ); } var maxRadiusSq = 0; for ( var i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; }; Sphere.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Sphere.prototype.copy = function copy ( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; }; Sphere.prototype.isEmpty = function isEmpty () { return ( this.radius < 0 ); }; Sphere.prototype.makeEmpty = function makeEmpty () { this.center.set( 0, 0, 0 ); this.radius = - 1; return this; }; Sphere.prototype.containsPoint = function containsPoint ( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); }; Sphere.prototype.distanceToPoint = function distanceToPoint ( point ) { return ( point.distanceTo( this.center ) - this.radius ); }; Sphere.prototype.intersectsSphere = function intersectsSphere ( sphere ) { var radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); }; Sphere.prototype.intersectsBox = function intersectsBox ( box ) { return box.intersectsSphere( this ); }; Sphere.prototype.intersectsPlane = function intersectsPlane ( plane ) { return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius; }; Sphere.prototype.clampPoint = function clampPoint ( point, target ) { var deltaLengthSq = this.center.distanceToSquared( point ); if ( target === undefined ) { console.warn( 'THREE.Sphere: .clampPoint() target is now required' ); target = new Vector3(); } target.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { target.sub( this.center ).normalize(); target.multiplyScalar( this.radius ).add( this.center ); } return target; }; Sphere.prototype.getBoundingBox = function getBoundingBox ( target ) { if ( target === undefined ) { console.warn( 'THREE.Sphere: .getBoundingBox() target is now required' ); target = new Box3(); } if ( this.isEmpty() ) { // Empty sphere produces empty bounding box target.makeEmpty(); return target; } target.set( this.center, this.center ); target.expandByScalar( this.radius ); return target; }; Sphere.prototype.applyMatrix4 = function applyMatrix4 ( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; }; Sphere.prototype.translate = function translate ( offset ) { this.center.add( offset ); return this; }; Sphere.prototype.equals = function equals ( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); }; var _vector$2 = new Vector3(); var _segCenter = new Vector3(); var _segDir = new Vector3(); var _diff = new Vector3(); var _edge1 = new Vector3(); var _edge2 = new Vector3(); var _normal = new Vector3(); var Ray = function Ray( origin, direction ) { this.origin = ( origin !== undefined ) ? origin : new Vector3(); this.direction = ( direction !== undefined ) ? direction : new Vector3( 0, 0, - 1 ); }; Ray.prototype.set = function set ( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; }; Ray.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Ray.prototype.copy = function copy ( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; }; Ray.prototype.at = function at ( t, target ) { if ( target === undefined ) { console.warn( 'THREE.Ray: .at() target is now required' ); target = new Vector3(); } return target.copy( this.direction ).multiplyScalar( t ).add( this.origin ); }; Ray.prototype.lookAt = function lookAt ( v ) { this.direction.copy( v ).sub( this.origin ).normalize(); return this; }; Ray.prototype.recast = function recast ( t ) { this.origin.copy( this.at( t, _vector$2 ) ); return this; }; Ray.prototype.closestPointToPoint = function closestPointToPoint ( point, target ) { if ( target === undefined ) { console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' ); target = new Vector3(); } target.subVectors( point, this.origin ); var directionDistance = target.dot( this.direction ); if ( directionDistance < 0 ) { return target.copy( this.origin ); } return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); }; Ray.prototype.distanceToPoint = function distanceToPoint ( point ) { return Math.sqrt( this.distanceSqToPoint( point ) ); }; Ray.prototype.distanceSqToPoint = function distanceSqToPoint ( point ) { var directionDistance = _vector$2.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceToSquared( point ); } _vector$2.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); return _vector$2.distanceToSquared( point ); }; Ray.prototype.distanceSqToSegment = function distanceSqToSegment ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment _segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); _segDir.copy( v1 ).sub( v0 ).normalize(); _diff.copy( this.origin ).sub( _segCenter ); var segExtent = v0.distanceTo( v1 ) * 0.5; var a01 = - this.direction.dot( _segDir ); var b0 = _diff.dot( this.direction ); var b1 = - _diff.dot( _segDir ); var c = _diff.lengthSq(); var det = Math.abs( 1 - a01 * a01 ); var s0, s1, sqrDist, extDet; if ( det > 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. var invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( _segDir ).multiplyScalar( s1 ).add( _segCenter ); } return sqrDist; }; Ray.prototype.intersectSphere = function intersectSphere ( sphere, target ) { _vector$2.subVectors( sphere.center, this.origin ); var tca = _vector$2.dot( this.direction ); var d2 = _vector$2.dot( _vector$2 ) - tca * tca; var radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) { return null; } var thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere var t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere var t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if ( t0 < 0 && t1 < 0 ) { return null; } // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) { return this.at( t1, target ); } // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, target ); }; Ray.prototype.intersectsSphere = function intersectsSphere ( sphere ) { return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius ); }; Ray.prototype.distanceToPlane = function distanceToPlane ( plane ) { var denominator = plane.normal.dot( this.direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; }; Ray.prototype.intersectPlane = function intersectPlane ( plane, target ) { var t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, target ); }; Ray.prototype.intersectsPlane = function intersectsPlane ( plane ) { // check if the ray lies on the plane first var distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } var denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; }; Ray.prototype.intersectBox = function intersectBox ( box, target ) { var tmin, tmax, tymin, tymax, tzmin, tzmax; var invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; var origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) { return null; } // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if ( tymin > tmin || tmin !== tmin ) { tmin = tymin; } if ( tymax < tmax || tmax !== tmax ) { tmax = tymax; } if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) { return null; } if ( tzmin > tmin || tmin !== tmin ) { tmin = tzmin; } if ( tzmax < tmax || tmax !== tmax ) { tmax = tzmax; } //return point closest to the ray (positive side) if ( tmax < 0 ) { return null; } return this.at( tmin >= 0 ? tmin : tmax, target ); }; Ray.prototype.intersectsBox = function intersectsBox ( box ) { return this.intersectBox( box, _vector$2 ) !== null; }; Ray.prototype.intersectTriangle = function intersectTriangle ( a, b, c, backfaceCulling, target ) { // Compute the offset origin, edges, and normal. // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h _edge1.subVectors( b, a ); _edge2.subVectors( c, a ); _normal.crossVectors( _edge1, _edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) var DdN = this.direction.dot( _normal ); var sign; if ( DdN > 0 ) { if ( backfaceCulling ) { return null; } sign = 1; } else if ( DdN < 0 ) { sign = - 1; DdN = - DdN; } else { return null; } _diff.subVectors( this.origin, a ); var DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } var DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. var QdN = - sign * _diff.dot( _normal ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, target ); }; Ray.prototype.applyMatrix4 = function applyMatrix4 ( matrix4 ) { this.origin.applyMatrix4( matrix4 ); this.direction.transformDirection( matrix4 ); return this; }; Ray.prototype.equals = function equals ( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); }; var Matrix4 = function Matrix4() { Object.defineProperty( this, 'isMatrix4', { value: true } ); this.elements = [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]; if ( arguments.length > 0 ) { console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' ); } }; Matrix4.prototype.set = function set ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { var te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; }; Matrix4.prototype.identity = function identity () { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }; Matrix4.prototype.clone = function clone () { return new Matrix4().fromArray( this.elements ); }; Matrix4.prototype.copy = function copy ( m ) { var te = this.elements; var me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; return this; }; Matrix4.prototype.copyPosition = function copyPosition ( m ) { var te = this.elements, me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; }; Matrix4.prototype.extractBasis = function extractBasis ( xAxis, yAxis, zAxis ) { xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 ); return this; }; Matrix4.prototype.makeBasis = function makeBasis ( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; }; Matrix4.prototype.extractRotation = function extractRotation ( m ) { // this method does not support reflection matrices var te = this.elements; var me = m.elements; var scaleX = 1 / _v1$1.setFromMatrixColumn( m, 0 ).length(); var scaleY = 1 / _v1$1.setFromMatrixColumn( m, 1 ).length(); var scaleZ = 1 / _v1$1.setFromMatrixColumn( m, 2 ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 3 ] = 0; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 7 ] = 0; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; te[ 11 ] = 0; te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }; Matrix4.prototype.makeRotationFromEuler = function makeRotationFromEuler ( euler ) { if ( ! ( euler && euler.isEuler ) ) { console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } var te = this.elements; var x = euler.x, y = euler.y, z = euler.z; var a = Math.cos( x ), b = Math.sin( x ); var c = Math.cos( y ), d = Math.sin( y ); var e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { var ce$1 = c * e, cf$1 = c * f, de$1 = d * e, df$1 = d * f; te[ 0 ] = ce$1 - df$1 * b; te[ 4 ] = - a * f; te[ 8 ] = de$1 + cf$1 * b; te[ 1 ] = cf$1 + de$1 * b; te[ 5 ] = a * e; te[ 9 ] = df$1 - ce$1 * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { var ae$1 = a * e, af$1 = a * f, be$1 = b * e, bf$1 = b * f; te[ 0 ] = c * e; te[ 4 ] = be$1 * d - af$1; te[ 8 ] = ae$1 * d + bf$1; te[ 1 ] = c * f; te[ 5 ] = bf$1 * d + ae$1; te[ 9 ] = af$1 * d - be$1; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { var ac$1 = a * c, ad$1 = a * d, bc$1 = b * c, bd$1 = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac$1 * f + bd$1; te[ 5 ] = a * e; te[ 9 ] = ad$1 * f - bc$1; te[ 2 ] = bc$1 * f - ad$1; te[ 6 ] = b * e; te[ 10 ] = bd$1 * f + ac$1; } // bottom row te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // last column te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; }; Matrix4.prototype.makeRotationFromQuaternion = function makeRotationFromQuaternion ( q ) { return this.compose( _zero, q, _one ); }; Matrix4.prototype.lookAt = function lookAt ( eye, target, up ) { var te = this.elements; _z.subVectors( eye, target ); if ( _z.lengthSq() === 0 ) { // eye and target are in the same position _z.z = 1; } _z.normalize(); _x.crossVectors( up, _z ); if ( _x.lengthSq() === 0 ) { // up and z are parallel if ( Math.abs( up.z ) === 1 ) { _z.x += 0.0001; } else { _z.z += 0.0001; } _z.normalize(); _x.crossVectors( up, _z ); } _x.normalize(); _y.crossVectors( _z, _x ); te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x; te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y; te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z; return this; }; Matrix4.prototype.multiply = function multiply ( m, n ) { if ( n !== undefined ) { console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ); return this.multiplyMatrices( m, n ); } return this.multiplyMatrices( this, m ); }; Matrix4.prototype.premultiply = function premultiply ( m ) { return this.multiplyMatrices( m, this ); }; Matrix4.prototype.multiplyMatrices = function multiplyMatrices ( a, b ) { var ae = a.elements; var be = b.elements; var te = this.elements; var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; }; Matrix4.prototype.multiplyScalar = function multiplyScalar ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; }; Matrix4.prototype.determinant = function determinant () { var te = this.elements; var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); }; Matrix4.prototype.transpose = function transpose () { var te = this.elements; var tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; }; Matrix4.prototype.setPosition = function setPosition ( x, y, z ) { var te = this.elements; if ( x.isVector3 ) { te[ 12 ] = x.x; te[ 13 ] = x.y; te[ 14 ] = x.z; } else { te[ 12 ] = x; te[ 13 ] = y; te[ 14 ] = z; } return this; }; Matrix4.prototype.getInverse = function getInverse ( m, throwOnDegenerate ) { if ( throwOnDegenerate !== undefined ) { console.warn( "THREE.Matrix4: .getInverse() can no longer be configured to throw on degenerate." ); } // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements, me = m.elements, n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ], n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ], n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ], n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if ( det === 0 ) { return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); } var detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; te[ 4 ] = t12 * detInv; te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; te[ 8 ] = t13 * detInv; te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; te[ 12 ] = t14 * detInv; te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; return this; }; Matrix4.prototype.scale = function scale ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; }; Matrix4.prototype.getMaxScaleOnAxis = function getMaxScaleOnAxis () { var te = this.elements; var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); }; Matrix4.prototype.makeTranslation = function makeTranslation ( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; }; Matrix4.prototype.makeRotationX = function makeRotationX ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; }; Matrix4.prototype.makeRotationY = function makeRotationY ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; }; Matrix4.prototype.makeRotationZ = function makeRotationZ ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }; Matrix4.prototype.makeRotationAxis = function makeRotationAxis ( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos( angle ); var s = Math.sin( angle ); var t = 1 - c; var x = axis.x, y = axis.y, z = axis.z; var tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; }; Matrix4.prototype.makeScale = function makeScale ( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; }; Matrix4.prototype.makeShear = function makeShear ( x, y, z ) { this.set( 1, y, z, 0, x, 1, z, 0, x, y, 1, 0, 0, 0, 0, 1 ); return this; }; Matrix4.prototype.compose = function compose ( position, quaternion, scale ) { var te = this.elements; var x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; var x2 = x + x,y2 = y + y, z2 = z + z; var xx = x * x2, xy = x * y2, xz = x * z2; var yy = y * y2, yz = y * z2, zz = z * z2; var wx = w * x2, wy = w * y2, wz = w * z2; var sx = scale.x, sy = scale.y, sz = scale.z; te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; te[ 1 ] = ( xy + wz ) * sx; te[ 2 ] = ( xz - wy ) * sx; te[ 3 ] = 0; te[ 4 ] = ( xy - wz ) * sy; te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; te[ 6 ] = ( yz + wx ) * sy; te[ 7 ] = 0; te[ 8 ] = ( xz + wy ) * sz; te[ 9 ] = ( yz - wx ) * sz; te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; te[ 11 ] = 0; te[ 12 ] = position.x; te[ 13 ] = position.y; te[ 14 ] = position.z; te[ 15 ] = 1; return this; }; Matrix4.prototype.decompose = function decompose ( position, quaternion, scale ) { var te = this.elements; var sx = _v1$1.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); var sy = _v1$1.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); var sz = _v1$1.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale var det = this.determinant(); if ( det < 0 ) { sx = - sx; } position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part _m1.copy( this ); var invSX = 1 / sx; var invSY = 1 / sy; var invSZ = 1 / sz; _m1.elements[ 0 ] *= invSX; _m1.elements[ 1 ] *= invSX; _m1.elements[ 2 ] *= invSX; _m1.elements[ 4 ] *= invSY; _m1.elements[ 5 ] *= invSY; _m1.elements[ 6 ] *= invSY; _m1.elements[ 8 ] *= invSZ; _m1.elements[ 9 ] *= invSZ; _m1.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( _m1 ); scale.x = sx; scale.y = sy; scale.z = sz; return this; }; Matrix4.prototype.makePerspective = function makePerspective ( left, right, top, bottom, near, far ) { if ( far === undefined ) { console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' ); } var te = this.elements; var x = 2 * near / ( right - left ); var y = 2 * near / ( top - bottom ); var a = ( right + left ) / ( right - left ); var b = ( top + bottom ) / ( top - bottom ); var c = - ( far + near ) / ( far - near ); var d = - 2 * far * near / ( far - near ); te[ 0 ] = x;te[ 4 ] = 0;te[ 8 ] = a;te[ 12 ] = 0; te[ 1 ] = 0;te[ 5 ] = y;te[ 9 ] = b;te[ 13 ] = 0; te[ 2 ] = 0;te[ 6 ] = 0;te[ 10 ] = c;te[ 14 ] = d; te[ 3 ] = 0;te[ 7 ] = 0;te[ 11 ] = - 1;te[ 15 ] = 0; return this; }; Matrix4.prototype.makeOrthographic = function makeOrthographic ( left, right, top, bottom, near, far ) { var te = this.elements; var w = 1.0 / ( right - left ); var h = 1.0 / ( top - bottom ); var p = 1.0 / ( far - near ); var x = ( right + left ) * w; var y = ( top + bottom ) * h; var z = ( far + near ) * p; te[ 0 ] = 2 * w;te[ 4 ] = 0;te[ 8 ] = 0;te[ 12 ] = - x; te[ 1 ] = 0;te[ 5 ] = 2 * h;te[ 9 ] = 0;te[ 13 ] = - y; te[ 2 ] = 0;te[ 6 ] = 0;te[ 10 ] = - 2 * p;te[ 14 ] = - z; te[ 3 ] = 0;te[ 7 ] = 0;te[ 11 ] = 0;te[ 15 ] = 1; return this; }; Matrix4.prototype.equals = function equals ( matrix ) { var te = this.elements; var me = matrix.elements; for ( var i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) { return false; } } return true; }; Matrix4.prototype.fromArray = function fromArray ( array, offset ) { if ( offset === undefined ) { offset = 0; } for ( var i = 0; i < 16; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; }; Matrix4.prototype.toArray = function toArray ( array, offset ) { if ( array === undefined ) { array = []; } if ( offset === undefined ) { offset = 0; } var te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; }; var _v1$1 = new Vector3(); var _m1 = new Matrix4(); var _zero = new Vector3( 0, 0, 0 ); var _one = new Vector3( 1, 1, 1 ); var _x = new Vector3(); var _y = new Vector3(); var _z = new Vector3(); var Euler = function Euler( x, y, z, order ) { if ( x === void 0 ) x = 0; if ( y === void 0 ) y = 0; if ( z === void 0 ) z = 0; if ( order === void 0 ) order = Euler.DefaultOrder; Object.defineProperty( this, 'isEuler', { value: true } ); this._x = x; this._y = y; this._z = z; this._order = order; }; var prototypeAccessors$3 = { x: { configurable: true },y: { configurable: true },z: { configurable: true },order: { configurable: true } }; prototypeAccessors$3.x.get = function () { return this._x; }; prototypeAccessors$3.x.set = function ( value ) { this._x = value; this._onChangeCallback(); }; prototypeAccessors$3.y.get = function () { return this._y; }; prototypeAccessors$3.y.set = function ( value ) { this._y = value; this._onChangeCallback(); }; prototypeAccessors$3.z.get = function () { return this._z; }; prototypeAccessors$3.z.set = function ( value ) { this._z = value; this._onChangeCallback(); }; prototypeAccessors$3.order.get = function () { return this._order; }; prototypeAccessors$3.order.set = function ( value ) { this._order = value; this._onChangeCallback(); }; Euler.prototype.set = function set ( x, y, z, order ) { this._x = x; this._y = y; this._z = z; this._order = order || this._order; this._onChangeCallback(); return this; }; Euler.prototype.clone = function clone () { return new this.constructor( this._x, this._y, this._z, this._order ); }; Euler.prototype.copy = function copy ( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this._onChangeCallback(); return this; }; Euler.prototype.setFromRotationMatrix = function setFromRotationMatrix ( m, order, update ) { var clamp = MathUtils.clamp; // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements; var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; order = order || this._order; switch ( order ) { case 'XYZ': this._y = Math.asin( clamp( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } break; case 'YXZ': this._x = Math.asin( - clamp( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.9999999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } break; case 'ZXY': this._x = Math.asin( clamp( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.9999999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } break; case 'ZYX': this._y = Math.asin( - clamp( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.9999999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } break; case 'YZX': this._z = Math.asin( clamp( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } break; case 'XZY': this._z = Math.asin( - clamp( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.9999999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } break; default: console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order ); } this._order = order; if ( update !== false ) { this._onChangeCallback(); } return this; }; Euler.prototype.setFromQuaternion = function setFromQuaternion ( q, order, update ) { _matrix.makeRotationFromQuaternion( q ); return this.setFromRotationMatrix( _matrix, order, update ); }; Euler.prototype.setFromVector3 = function setFromVector3 ( v, order ) { return this.set( v.x, v.y, v.z, order || this._order ); }; Euler.prototype.reorder = function reorder ( newOrder ) { // WARNING: this discards revolution information -bhouston _quaternion$1.setFromEuler( this ); return this.setFromQuaternion( _quaternion$1, newOrder ); }; Euler.prototype.equals = function equals ( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); }; Euler.prototype.fromArray = function fromArray ( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) { this._order = array[ 3 ]; } this._onChangeCallback(); return this; }; Euler.prototype.toArray = function toArray ( array, offset ) { if ( array === undefined ) { array = []; } if ( offset === undefined ) { offset = 0; } array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order; return array; }; Euler.prototype.toVector3 = function toVector3 ( optionalResult ) { if ( optionalResult ) { return optionalResult.set( this._x, this._y, this._z ); } else { return new Vector3( this._x, this._y, this._z ); } }; Euler.prototype._onChange = function _onChange ( callback ) { this._onChangeCallback = callback; return this; }; Euler.prototype._onChangeCallback = function _onChangeCallback () {}; Object.defineProperties( Euler.prototype, prototypeAccessors$3 ); Euler.DefaultOrder = 'XYZ'; Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; var _matrix = new Matrix4(); var _quaternion$1 = new Quaternion(); var Layers = function Layers() { this.mask = 1 | 0; }; Layers.prototype.set = function set ( channel ) { this.mask = 1 << channel | 0; }; Layers.prototype.enable = function enable ( channel ) { this.mask |= 1 << channel | 0; }; Layers.prototype.enableAll = function enableAll () { this.mask = 0xffffffff | 0; }; Layers.prototype.toggle = function toggle ( channel ) { this.mask ^= 1 << channel | 0; }; Layers.prototype.disable = function disable ( channel ) { this.mask &= ~ ( 1 << channel | 0 ); }; Layers.prototype.disableAll = function disableAll () { this.mask = 0; }; Layers.prototype.test = function test ( layers ) { return ( this.mask & layers.mask ) !== 0; }; var _object3DId = 0; var _v1$2 = new Vector3(); var _q1 = new Quaternion(); var _m1$1 = new Matrix4(); var _target = new Vector3(); var _position = new Vector3(); var _scale = new Vector3(); var _quaternion$2 = new Quaternion(); var _xAxis = new Vector3( 1, 0, 0 ); var _yAxis = new Vector3( 0, 1, 0 ); var _zAxis = new Vector3( 0, 0, 1 ); var _addedEvent = { type: 'added' }; var _removedEvent = { type: 'removed' }; function Object3D() { Object.defineProperty( this, 'id', { value: _object3DId ++ } ); this.uuid = MathUtils.generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = Object3D.DefaultUp.clone(); var position = new Vector3(); var rotation = new Euler(); var quaternion = new Quaternion(); var scale = new Vector3( 1, 1, 1 ); function onRotationChange() { quaternion.setFromEuler( rotation, false ); } function onQuaternionChange() { rotation.setFromQuaternion( quaternion, undefined, false ); } rotation._onChange( onRotationChange ); quaternion._onChange( onQuaternionChange ); Object.defineProperties( this, { position: { configurable: true, enumerable: true, value: position }, rotation: { configurable: true, enumerable: true, value: rotation }, quaternion: { configurable: true, enumerable: true, value: quaternion }, scale: { configurable: true, enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } } ); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.userData = {}; } Object3D.DefaultUp = new Vector3( 0, 1, 0 ); Object3D.DefaultMatrixAutoUpdate = true; Object3D.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { constructor: Object3D, isObject3D: true, onBeforeRender: function () {}, onAfterRender: function () {}, applyMatrix4: function ( matrix ) { if ( this.matrixAutoUpdate ) { this.updateMatrix(); } this.matrix.premultiply( matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); }, applyQuaternion: function ( q ) { this.quaternion.premultiply( q ); return this; }, setRotationFromAxisAngle: function ( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); }, setRotationFromEuler: function ( euler ) { this.quaternion.setFromEuler( euler, true ); }, setRotationFromMatrix: function ( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); }, setRotationFromQuaternion: function ( q ) { // assumes q is normalized this.quaternion.copy( q ); }, rotateOnAxis: function ( axis, angle ) { // rotate object on axis in object space // axis is assumed to be normalized _q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( _q1 ); return this; }, rotateOnWorldAxis: function ( axis, angle ) { // rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent _q1.setFromAxisAngle( axis, angle ); this.quaternion.premultiply( _q1 ); return this; }, rotateX: function ( angle ) { return this.rotateOnAxis( _xAxis, angle ); }, rotateY: function ( angle ) { return this.rotateOnAxis( _yAxis, angle ); }, rotateZ: function ( angle ) { return this.rotateOnAxis( _zAxis, angle ); }, translateOnAxis: function ( axis, distance ) { // translate object by distance along axis in object space // axis is assumed to be normalized _v1$2.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( _v1$2.multiplyScalar( distance ) ); return this; }, translateX: function ( distance ) { return this.translateOnAxis( _xAxis, distance ); }, translateY: function ( distance ) { return this.translateOnAxis( _yAxis, distance ); }, translateZ: function ( distance ) { return this.translateOnAxis( _zAxis, distance ); }, localToWorld: function ( vector ) { return vector.applyMatrix4( this.matrixWorld ); }, worldToLocal: function ( vector ) { return vector.applyMatrix4( _m1$1.getInverse( this.matrixWorld ) ); }, lookAt: function ( x, y, z ) { // This method does not support objects having non-uniformly-scaled parent(s) if ( x.isVector3 ) { _target.copy( x ); } else { _target.set( x, y, z ); } var parent = this.parent; this.updateWorldMatrix( true, false ); _position.setFromMatrixPosition( this.matrixWorld ); if ( this.isCamera || this.isLight ) { _m1$1.lookAt( _position, _target, this.up ); } else { _m1$1.lookAt( _target, _position, this.up ); } this.quaternion.setFromRotationMatrix( _m1$1 ); if ( parent ) { _m1$1.extractRotation( parent.matrixWorld ); _q1.setFromRotationMatrix( _m1$1 ); this.quaternion.premultiply( _q1.inverse() ); } }, add: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.add( arguments[ i ] ); } return this; } if ( object === this ) { console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object ); return this; } if ( ( object && object.isObject3D ) ) { if ( object.parent !== null ) { object.parent.remove( object ); } object.parent = this; this.children.push( object ); object.dispatchEvent( _addedEvent ); } else { console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object ); } return this; }, remove: function ( object ) { if ( arguments.length > 1 ) { for ( var i = 0; i < arguments.length; i ++ ) { this.remove( arguments[ i ] ); } return this; } var index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = null; this.children.splice( index, 1 ); object.dispatchEvent( _removedEvent ); } return this; }, attach: function ( object ) { // adds object as a child of this, while maintaining the object's world transform this.updateWorldMatrix( true, false ); _m1$1.getInverse( this.matrixWorld ); if ( object.parent !== null ) { object.parent.updateWorldMatrix( true, false ); _m1$1.multiply( object.parent.matrixWorld ); } object.applyMatrix4( _m1$1 ); object.updateWorldMatrix( false, false ); this.add( object ); return this; }, getObjectById: function ( id ) { return this.getObjectByProperty( 'id', id ); }, getObjectByName: function ( name ) { return this.getObjectByProperty( 'name', name ); }, getObjectByProperty: function ( name, value ) { if ( this[ name ] === value ) { return this; } for ( var i = 0, l = this.children.length; i < l; i ++ ) { var child = this.children[ i ]; var object = child.getObjectByProperty( name, value ); if ( object !== undefined ) { return object; } } return undefined; }, getWorldPosition: function ( target ) { if ( target === undefined ) { console.warn( 'THREE.Object3D: .getWorldPosition() target is now required' ); target = new Vector3(); } this.updateMatrixWorld( true ); return target.setFromMatrixPosition( this.matrixWorld ); }, getWorldQuaternion: function ( target ) { if ( target === undefined ) { console.warn( 'THREE.Object3D: .getWorldQuaternion() target is now required' ); target = new Quaternion(); } this.updateMatrixWorld( true ); this.matrixWorld.decompose( _position, target, _scale ); return target; }, getWorldScale: function ( target ) { if ( target === undefined ) { console.warn( 'THREE.Object3D: .getWorldScale() target is now required' ); target = new Vector3(); } this.updateMatrixWorld( true ); this.matrixWorld.decompose( _position, _quaternion$2, target ); return target; }, getWorldDirection: function ( target ) { if ( target === undefined ) { console.warn( 'THREE.Object3D: .getWorldDirection() target is now required' ); target = new Vector3(); } this.updateMatrixWorld( true ); var e = this.matrixWorld.elements; return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize(); }, raycast: function () {}, traverse: function ( callback ) { callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverse( callback ); } }, traverseVisible: function ( callback ) { if ( this.visible === false ) { return; } callback( this ); var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverseVisible( callback ); } }, traverseAncestors: function ( callback ) { var parent = this.parent; if ( parent !== null ) { callback( parent ); parent.traverseAncestors( callback ); } }, updateMatrix: function () { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; }, updateMatrixWorld: function ( force ) { if ( this.matrixAutoUpdate ) { this.updateMatrix(); } if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateMatrixWorld( force ); } }, updateWorldMatrix: function ( updateParents, updateChildren ) { var parent = this.parent; if ( updateParents === true && parent !== null ) { parent.updateWorldMatrix( true, false ); } if ( this.matrixAutoUpdate ) { this.updateMatrix(); } if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } // update children if ( updateChildren === true ) { var children = this.children; for ( var i = 0, l = children.length; i < l; i ++ ) { children[ i ].updateWorldMatrix( false, true ); } } }, toJSON: function ( meta ) { // meta is a string when called from JSON.stringify var isRootObject = ( meta === undefined || typeof meta === 'string' ); var output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {} }; output.metadata = { version: 4.5, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization var object = {}; object.uuid = this.uuid; object.type = this.type; if ( this.name !== '' ) { object.name = this.name; } if ( this.castShadow === true ) { object.castShadow = true; } if ( this.receiveShadow === true ) { object.receiveShadow = true; } if ( this.visible === false ) { object.visible = false; } if ( this.frustumCulled === false ) { object.frustumCulled = false; } if ( this.renderOrder !== 0 ) { object.renderOrder = this.renderOrder; } if ( JSON.stringify( this.userData ) !== '{}' ) { object.userData = this.userData; } object.layers = this.layers.mask; object.matrix = this.matrix.toArray(); if ( this.matrixAutoUpdate === false ) { object.matrixAutoUpdate = false; } // object specific properties if ( this.isInstancedMesh ) { object.type = 'InstancedMesh'; object.count = this.count; object.instanceMatrix = this.instanceMatrix.toJSON(); } // function serialize( library, element ) { if ( library[ element.uuid ] === undefined ) { library[ element.uuid ] = element.toJSON( meta ); } return element.uuid; } if ( this.isMesh || this.isLine || this.isPoints ) { object.geometry = serialize( meta.geometries, this.geometry ); var parameters = this.geometry.parameters; if ( parameters !== undefined && parameters.shapes !== undefined ) { var shapes = parameters.shapes; if ( Array.isArray( shapes ) ) { for ( var i = 0, l = shapes.length; i < l; i ++ ) { var shape = shapes[ i ]; serialize( meta.shapes, shape ); } } else { serialize( meta.shapes, shapes ); } } } if ( this.material !== undefined ) { if ( Array.isArray( this.material ) ) { var uuids = []; for ( var i$1 = 0, l$1 = this.material.length; i$1 < l$1; i$1 ++ ) { uuids.push( serialize( meta.materials, this.material[ i$1 ] ) ); } object.material = uuids; } else { object.material = serialize( meta.materials, this.material ); } } // if ( this.children.length > 0 ) { object.children = []; for ( var i$2 = 0; i$2 < this.children.length; i$2 ++ ) { object.children.push( this.children[ i$2 ].toJSON( meta ).object ); } } if ( isRootObject ) { var geometries = extractFromCache( meta.geometries ); var materials = extractFromCache( meta.materials ); var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); var shapes$1 = extractFromCache( meta.shapes ); if ( geometries.length > 0 ) { output.geometries = geometries; } if ( materials.length > 0 ) { output.materials = materials; } if ( textures.length > 0 ) { output.textures = textures; } if ( images.length > 0 ) { output.images = images; } if ( shapes$1.length > 0 ) { output.shapes = shapes$1; } } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } }, clone: function ( recursive ) { return new this.constructor().copy( this, recursive ); }, copy: function ( source, recursive ) { if ( recursive === undefined ) { recursive = true; } this.name = source.name; this.up.copy( source.up ); this.position.copy( source.position ); this.rotation.order = source.rotation.order; this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale ); this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld ); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.layers.mask = source.layers.mask; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.userData = JSON.parse( JSON.stringify( source.userData ) ); if ( recursive === true ) { for ( var i = 0; i < source.children.length; i ++ ) { var child = source.children[ i ]; this.add( child.clone() ); } } return this; } } ); var _vector1 = new Vector3(); var _vector2 = new Vector3(); var _normalMatrix = new Matrix3(); var Plane = function Plane( normal, constant ) { Object.defineProperty( this, 'isPlane', { value: true } ); // normal is assumed to be normalized this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 ); this.constant = ( constant !== undefined ) ? constant : 0; }; Plane.prototype.set = function set ( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; }; Plane.prototype.setComponents = function setComponents ( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; }; Plane.prototype.setFromNormalAndCoplanarPoint = function setFromNormalAndCoplanarPoint ( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); return this; }; Plane.prototype.setFromCoplanarPoints = function setFromCoplanarPoints ( a, b, c ) { var normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; }; Plane.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Plane.prototype.copy = function copy ( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; }; Plane.prototype.normalize = function normalize () { // Note: will lead to a divide by zero if the plane is invalid. var inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; }; Plane.prototype.negate = function negate () { this.constant *= - 1; this.normal.negate(); return this; }; Plane.prototype.distanceToPoint = function distanceToPoint ( point ) { return this.normal.dot( point ) + this.constant; }; Plane.prototype.distanceToSphere = function distanceToSphere ( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; }; Plane.prototype.projectPoint = function projectPoint ( point, target ) { if ( target === undefined ) { console.warn( 'THREE.Plane: .projectPoint() target is now required' ); target = new Vector3(); } return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point ); }; Plane.prototype.intersectLine = function intersectLine ( line, target ) { if ( target === undefined ) { console.warn( 'THREE.Plane: .intersectLine() target is now required' ); target = new Vector3(); } var direction = line.delta( _vector1 ); var denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return target.copy( line.start ); } // Unsure if this is the correct method to handle this case. return undefined; } var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return undefined; } return target.copy( direction ).multiplyScalar( t ).add( line.start ); }; Plane.prototype.intersectsLine = function intersectsLine ( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. var startSign = this.distanceToPoint( line.start ); var endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); }; Plane.prototype.intersectsBox = function intersectsBox ( box ) { return box.intersectsPlane( this ); }; Plane.prototype.intersectsSphere = function intersectsSphere ( sphere ) { return sphere.intersectsPlane( this ); }; Plane.prototype.coplanarPoint = function coplanarPoint ( target ) { if ( target === undefined ) { console.warn( 'THREE.Plane: .coplanarPoint() target is now required' ); target = new Vector3(); } return target.copy( this.normal ).multiplyScalar( - this.constant ); }; Plane.prototype.applyMatrix4 = function applyMatrix4 ( matrix, optionalNormalMatrix ) { var normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix ); var referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix ); var normal = this.normal.applyMatrix3( normalMatrix ).normalize(); this.constant = - referencePoint.dot( normal ); return this; }; Plane.prototype.translate = function translate ( offset ) { this.constant -= offset.dot( this.normal ); return this; }; Plane.prototype.equals = function equals ( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); }; var _v0$1 = new Vector3(); var _v1$3 = new Vector3(); var _v2$1 = new Vector3(); var _v3 = new Vector3(); var _vab = new Vector3(); var _vac = new Vector3(); var _vbc = new Vector3(); var _vap = new Vector3(); var _vbp = new Vector3(); var _vcp = new Vector3(); var Triangle = function Triangle( a, b, c ) { this.a = ( a !== undefined ) ? a : new Vector3(); this.b = ( b !== undefined ) ? b : new Vector3(); this.c = ( c !== undefined ) ? c : new Vector3(); }; Triangle.getNormal = function getNormal ( a, b, c, target ) { if ( target === undefined ) { console.warn( 'THREE.Triangle: .getNormal() target is now required' ); target = new Vector3(); } target.subVectors( c, b ); _v0$1.subVectors( a, b ); target.cross( _v0$1 ); var targetLengthSq = target.lengthSq(); if ( targetLengthSq > 0 ) { return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) ); } return target.set( 0, 0, 0 ); }; // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html Triangle.getBarycoord = function getBarycoord ( point, a, b, c, target ) { _v0$1.subVectors( c, a ); _v1$3.subVectors( b, a ); _v2$1.subVectors( point, a ); var dot00 = _v0$1.dot( _v0$1 ); var dot01 = _v0$1.dot( _v1$3 ); var dot02 = _v0$1.dot( _v2$1 ); var dot11 = _v1$3.dot( _v1$3 ); var dot12 = _v1$3.dot( _v2$1 ); var denom = ( dot00 * dot11 - dot01 * dot01 ); if ( target === undefined ) { console.warn( 'THREE.Triangle: .getBarycoord() target is now required' ); target = new Vector3(); } // collinear or singular triangle if ( denom === 0 ) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return target.set( - 2, - 1, - 1 ); } var invDenom = 1 / denom; var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return target.set( 1 - u - v, v, u ); }; Triangle.containsPoint = function containsPoint ( point, a, b, c ) { this.getBarycoord( point, a, b, c, _v3 ); return ( _v3.x >= 0 ) && ( _v3.y >= 0 ) && ( ( _v3.x + _v3.y ) <= 1 ); }; Triangle.getUV = function getUV ( point, p1, p2, p3, uv1, uv2, uv3, target ) { this.getBarycoord( point, p1, p2, p3, _v3 ); target.set( 0, 0 ); target.addScaledVector( uv1, _v3.x ); target.addScaledVector( uv2, _v3.y ); target.addScaledVector( uv3, _v3.z ); return target; }; Triangle.isFrontFacing = function isFrontFacing ( a, b, c, direction ) { _v0$1.subVectors( c, b ); _v1$3.subVectors( a, b ); // strictly front facing return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false; }; Triangle.prototype.set = function set ( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; }; Triangle.prototype.setFromPointsAndIndices = function setFromPointsAndIndices ( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; }; Triangle.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Triangle.prototype.copy = function copy ( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; }; Triangle.prototype.getArea = function getArea () { _v0$1.subVectors( this.c, this.b ); _v1$3.subVectors( this.a, this.b ); return _v0$1.cross( _v1$3 ).length() * 0.5; }; Triangle.prototype.getMidpoint = function getMidpoint ( target ) { if ( target === undefined ) { console.warn( 'THREE.Triangle: .getMidpoint() target is now required' ); target = new Vector3(); } return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); }; Triangle.prototype.getNormal = function getNormal ( target ) { return Triangle.getNormal( this.a, this.b, this.c, target ); }; Triangle.prototype.getPlane = function getPlane ( target ) { if ( target === undefined ) { console.warn( 'THREE.Triangle: .getPlane() target is now required' ); target = new Plane(); } return target.setFromCoplanarPoints( this.a, this.b, this.c ); }; Triangle.prototype.getBarycoord = function getBarycoord ( point, target ) { return Triangle.getBarycoord( point, this.a, this.b, this.c, target ); }; Triangle.prototype.getUV = function getUV ( point, uv1, uv2, uv3, target ) { return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target ); }; Triangle.prototype.containsPoint = function containsPoint ( point ) { return Triangle.containsPoint( point, this.a, this.b, this.c ); }; Triangle.prototype.isFrontFacing = function isFrontFacing ( direction ) { return Triangle.isFrontFacing( this.a, this.b, this.c, direction ); }; Triangle.prototype.intersectsBox = function intersectsBox ( box ) { return box.intersectsTriangle( this ); }; Triangle.prototype.closestPointToPoint = function closestPointToPoint ( p, target ) { if ( target === undefined ) { console.warn( 'THREE.Triangle: .closestPointToPoint() target is now required' ); target = new Vector3(); } var a = this.a, b = this.b, c = this.c; var v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we're distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation. _vab.subVectors( b, a ); _vac.subVectors( c, a ); _vap.subVectors( p, a ); var d1 = _vab.dot( _vap ); var d2 = _vac.dot( _vap ); if ( d1 <= 0 && d2 <= 0 ) { // vertex region of A; barycentric coords (1, 0, 0) return target.copy( a ); } _vbp.subVectors( p, b ); var d3 = _vab.dot( _vbp ); var d4 = _vac.dot( _vbp ); if ( d3 >= 0 && d4 <= d3 ) { // vertex region of B; barycentric coords (0, 1, 0) return target.copy( b ); } var vc = d1 * d4 - d3 * d2; if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) { v = d1 / ( d1 - d3 ); // edge region of AB; barycentric coords (1-v, v, 0) return target.copy( a ).addScaledVector( _vab, v ); } _vcp.subVectors( p, c ); var d5 = _vab.dot( _vcp ); var d6 = _vac.dot( _vcp ); if ( d6 >= 0 && d5 <= d6 ) { // vertex region of C; barycentric coords (0, 0, 1) return target.copy( c ); } var vb = d5 * d2 - d1 * d6; if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) { w = d2 / ( d2 - d6 ); // edge region of AC; barycentric coords (1-w, 0, w) return target.copy( a ).addScaledVector( _vac, w ); } var va = d3 * d6 - d5 * d4; if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) { _vbc.subVectors( c, b ); w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ); // edge region of BC; barycentric coords (0, 1-w, w) return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC } // face region var denom = 1 / ( va + vb + vc ); // u = va * denom v = vb * denom; w = vc * denom; return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w ); }; Triangle.prototype.equals = function equals ( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); }; var _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; var _hslA = { h: 0, s: 0, l: 0 }; var _hslB = { h: 0, s: 0, l: 0 }; function hue2rgb( p, q, t ) { if ( t < 0 ) { t += 1; } if ( t > 1 ) { t -= 1; } if ( t < 1 / 6 ) { return p + ( q - p ) * 6 * t; } if ( t < 1 / 2 ) { return q; } if ( t < 2 / 3 ) { return p + ( q - p ) * 6 * ( 2 / 3 - t ); } return p; } function SRGBToLinear( c ) { return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); } function LinearToSRGB( c ) { return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055; } var Color = function Color( r, g, b ) { Object.defineProperty( this, 'isColor', { value: true } ); if ( g === undefined && b === undefined ) { // r is THREE.Color, hex or string return this.set( r ); } return this.setRGB( r, g, b ); }; Color.prototype.set = function set ( value ) { if ( value && value.isColor ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } return this; }; Color.prototype.setScalar = function setScalar ( scalar ) { this.r = scalar; this.g = scalar; this.b = scalar; return this; }; Color.prototype.setHex = function setHex ( hex ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; return this; }; Color.prototype.setRGB = function setRGB ( r, g, b ) { this.r = r; this.g = g; this.b = b; return this; }; Color.prototype.setHSL = function setHSL ( h, s, l ) { // h,s,l ranges are in 0.0 - 1.0 h = MathUtils.euclideanModulo( h, 1 ); s = MathUtils.clamp( s, 0, 1 ); l = MathUtils.clamp( l, 0, 1 ); if ( s === 0 ) { this.r = this.g = this.b = l; } else { var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); var q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } return this; }; Color.prototype.setStyle = function setStyle ( style ) { function handleAlpha( string ) { if ( string === undefined ) { return; } if ( parseFloat( string ) < 1 ) { console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); } } var m; if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) { // rgb / hsl var color; var name = m[ 1 ]; var components = m[ 2 ]; switch ( name ) { case 'rgb': case 'rgba': if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255; handleAlpha( color[ 5 ] ); return this; } if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100; handleAlpha( color[ 5 ] ); return this; } break; case 'hsl': case 'hsla': if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) var h = parseFloat( color[ 1 ] ) / 360; var s = parseInt( color[ 2 ], 10 ) / 100; var l = parseInt( color[ 3 ], 10 ) / 100; handleAlpha( color[ 5 ] ); return this.setHSL( h, s, l ); } break; } } else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) { // hex color var hex = m[ 1 ]; var size = hex.length; if ( size === 3 ) { // #ff0 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255; this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255; this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255; return this; } else if ( size === 6 ) { // #ff0000 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255; this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255; this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255; return this; } } if ( style && style.length > 0 ) { return this.setColorName( style ); } return this; }; Color.prototype.setColorName = function setColorName ( style ) { // color keywords var hex = _colorKeywords[ style ]; if ( hex !== undefined ) { // red this.setHex( hex ); } else { // unknown color console.warn( 'THREE.Color: Unknown color ' + style ); } return this; }; Color.prototype.clone = function clone () { return new this.constructor( this.r, this.g, this.b ); }; Color.prototype.copy = function copy ( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; }; Color.prototype.copyGammaToLinear = function copyGammaToLinear ( color, gammaFactor ) { if ( gammaFactor === undefined ) { gammaFactor = 2.0; } this.r = Math.pow( color.r, gammaFactor ); this.g = Math.pow( color.g, gammaFactor ); this.b = Math.pow( color.b, gammaFactor ); return this; }; Color.prototype.copyLinearToGamma = function copyLinearToGamma ( color, gammaFactor ) { if ( gammaFactor === undefined ) { gammaFactor = 2.0; } var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0; this.r = Math.pow( color.r, safeInverse ); this.g = Math.pow( color.g, safeInverse ); this.b = Math.pow( color.b, safeInverse ); return this; }; Color.prototype.convertGammaToLinear = function convertGammaToLinear ( gammaFactor ) { this.copyGammaToLinear( this, gammaFactor ); return this; }; Color.prototype.convertLinearToGamma = function convertLinearToGamma ( gammaFactor ) { this.copyLinearToGamma( this, gammaFactor ); return this; }; Color.prototype.copySRGBToLinear = function copySRGBToLinear ( color ) { this.r = SRGBToLinear( color.r ); this.g = SRGBToLinear( color.g ); this.b = SRGBToLinear( color.b ); return this; }; Color.prototype.copyLinearToSRGB = function copyLinearToSRGB ( color ) { this.r = LinearToSRGB( color.r ); this.g = LinearToSRGB( color.g ); this.b = LinearToSRGB( color.b ); return this; }; Color.prototype.convertSRGBToLinear = function convertSRGBToLinear () { this.copySRGBToLinear( this ); return this; }; Color.prototype.convertLinearToSRGB = function convertLinearToSRGB () { this.copyLinearToSRGB( this ); return this; }; Color.prototype.getHex = function getHex () { return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0; }; Color.prototype.getHexString = function getHexString () { return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 ); }; Color.prototype.getHSL = function getHSL ( target ) { // h,s,l ranges are in 0.0 - 1.0 if ( target === undefined ) { console.warn( 'THREE.Color: .getHSL() target is now required' ); target = { h: 0, s: 0, l: 0 }; } var r = this.r, g = this.g, b = this.b; var max = Math.max( r, g, b ); var min = Math.min( r, g, b ); var hue, saturation; var lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { var delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } target.h = hue; target.s = saturation; target.l = lightness; return target; }; Color.prototype.getStyle = function getStyle () { return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')'; }; Color.prototype.offsetHSL = function offsetHSL ( h, s, l ) { this.getHSL( _hslA ); _hslA.h += h; _hslA.s += s; _hslA.l += l; this.setHSL( _hslA.h, _hslA.s, _hslA.l ); return this; }; Color.prototype.add = function add ( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; }; Color.prototype.addColors = function addColors ( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; }; Color.prototype.addScalar = function addScalar ( s ) { this.r += s; this.g += s; this.b += s; return this; }; Color.prototype.sub = function sub ( color ) { this.r = Math.max( 0, this.r - color.r ); this.g = Math.max( 0, this.g - color.g ); this.b = Math.max( 0, this.b - color.b ); return this; }; Color.prototype.multiply = function multiply ( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; }; Color.prototype.multiplyScalar = function multiplyScalar ( s ) { this.r *= s; this.g *= s; this.b *= s; return this; }; Color.prototype.lerp = function lerp ( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; }; Color.prototype.lerpHSL = function lerpHSL ( color, alpha ) { this.getHSL( _hslA ); color.getHSL( _hslB ); var h = MathUtils.lerp( _hslA.h, _hslB.h, alpha ); var s = MathUtils.lerp( _hslA.s, _hslB.s, alpha ); var l = MathUtils.lerp( _hslA.l, _hslB.l, alpha ); this.setHSL( h, s, l ); return this; }; Color.prototype.equals = function equals ( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); }; Color.prototype.fromArray = function fromArray ( array, offset ) { if ( offset === undefined ) { offset = 0; } this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ]; return this; }; Color.prototype.toArray = function toArray ( array, offset ) { if ( array === undefined ) { array = []; } if ( offset === undefined ) { offset = 0; } array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b; return array; }; Color.prototype.fromBufferAttribute = function fromBufferAttribute ( attribute, index ) { this.r = attribute.getX( index ); this.g = attribute.getY( index ); this.b = attribute.getZ( index ); if ( attribute.normalized === true ) { // assuming Uint8Array this.r /= 255; this.g /= 255; this.b /= 255; } return this; }; Color.prototype.toJSON = function toJSON () { return this.getHex(); }; Color.NAMES = _colorKeywords; Color.prototype.r = 1; Color.prototype.g = 1; Color.prototype.b = 1; var Face3 = function Face3( a, b, c, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3(); this.vertexNormals = Array.isArray( normal ) ? normal : []; this.color = ( color && color.isColor ) ? color : new Color(); this.vertexColors = Array.isArray( color ) ? color : []; this.materialIndex = materialIndex !== undefined ? materialIndex : 0; }; Face3.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Face3.prototype.copy = function copy ( source ) { this.a = source.a; this.b = source.b; this.c = source.c; this.normal.copy( source.normal ); this.color.copy( source.color ); this.materialIndex = source.materialIndex; for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) { this.vertexNormals[ i ] = source.vertexNormals[ i ].clone(); } for ( var i$1 = 0, il$1 = source.vertexColors.length; i$1 < il$1; i$1 ++ ) { this.vertexColors[ i$1 ] = source.vertexColors[ i$1 ].clone(); } return this; }; var materialId = 0; function Material() { Object.defineProperty( this, 'id', { value: materialId ++ } ); this.uuid = MathUtils.generateUUID(); this.name = ''; this.type = 'Material'; this.fog = true; this.blending = NormalBlending; this.side = FrontSide; this.flatShading = false; this.vertexColors = false; this.opacity = 1; this.transparent = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.stencilWriteMask = 0xff; this.stencilFunc = AlwaysStencilFunc; this.stencilRef = 0; this.stencilFuncMask = 0xff; this.stencilFail = KeepStencilOp; this.stencilZFail = KeepStencilOp; this.stencilZPass = KeepStencilOp; this.stencilWrite = false; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.shadowSide = null; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.dithering = false; this.alphaTest = 0; this.premultipliedAlpha = false; this.visible = true; this.toneMapped = true; this.userData = {}; this.version = 0; } Material.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { constructor: Material, isMaterial: true, onBeforeCompile: function ( /* shaderobject, renderer */ ) {}, customProgramCacheKey: function () { return this.onBeforeCompile.toString(); }, setValues: function ( values ) { if ( values === undefined ) { return; } for ( var key in values ) { var newValue = values[ key ]; if ( newValue === undefined ) { console.warn( "THREE.Material: '" + key + "' parameter is undefined." ); continue; } // for backward compatability if shading is set in the constructor if ( key === 'shading' ) { console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); this.flatShading = ( newValue === FlatShading ) ? true : false; continue; } var currentValue = this[ key ]; if ( currentValue === undefined ) { console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." ); continue; } if ( currentValue && currentValue.isColor ) { currentValue.set( newValue ); } else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) { currentValue.copy( newValue ); } else { this[ key ] = newValue; } } }, toJSON: function ( meta ) { var isRoot = ( meta === undefined || typeof meta === 'string' ); if ( isRoot ) { meta = { textures: {}, images: {} }; } var data = { metadata: { version: 4.5, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) { data.name = this.name; } if ( this.color && this.color.isColor ) { data.color = this.color.getHex(); } if ( this.roughness !== undefined ) { data.roughness = this.roughness; } if ( this.metalness !== undefined ) { data.metalness = this.metalness; } if ( this.sheen && this.sheen.isColor ) { data.sheen = this.sheen.getHex(); } if ( this.emissive && this.emissive.isColor ) { data.emissive = this.emissive.getHex(); } if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) { data.emissiveIntensity = this.emissiveIntensity; } if ( this.specular && this.specular.isColor ) { data.specular = this.specular.getHex(); } if ( this.shininess !== undefined ) { data.shininess = this.shininess; } if ( this.clearcoat !== undefined ) { data.clearcoat = this.clearcoat; } if ( this.clearcoatRoughness !== undefined ) { data.clearcoatRoughness = this.clearcoatRoughness; } if ( this.clearcoatMap && this.clearcoatMap.isTexture ) { data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid; } if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) { data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid; } if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) { data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid; data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); } if ( this.map && this.map.isTexture ) { data.map = this.map.toJSON( meta ).uuid; } if ( this.matcap && this.matcap.isTexture ) { data.matcap = this.matcap.toJSON( meta ).uuid; } if ( this.alphaMap && this.alphaMap.isTexture ) { data.alphaMap = this.alphaMap.toJSON( meta ).uuid; } if ( this.lightMap && this.lightMap.isTexture ) { data.lightMap = this.lightMap.toJSON( meta ).uuid; } if ( this.aoMap && this.aoMap.isTexture ) { data.aoMap = this.aoMap.toJSON( meta ).uuid; data.aoMapIntensity = this.aoMapIntensity; } if ( this.bumpMap && this.bumpMap.isTexture ) { data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale; } if ( this.normalMap && this.normalMap.isTexture ) { data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalMapType = this.normalMapType; data.normalScale = this.normalScale.toArray(); } if ( this.displacementMap && this.displacementMap.isTexture ) { data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if ( this.roughnessMap && this.roughnessMap.isTexture ) { data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; } if ( this.metalnessMap && this.metalnessMap.isTexture ) { data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; } if ( this.emissiveMap && this.emissiveMap.isTexture ) { data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; } if ( this.specularMap && this.specularMap.isTexture ) { data.specularMap = this.specularMap.toJSON( meta ).uuid; } if ( this.envMap && this.envMap.isTexture ) { data.envMap = this.envMap.toJSON( meta ).uuid; data.reflectivity = this.reflectivity; // Scale behind envMap data.refractionRatio = this.refractionRatio; if ( this.combine !== undefined ) { data.combine = this.combine; } if ( this.envMapIntensity !== undefined ) { data.envMapIntensity = this.envMapIntensity; } } if ( this.gradientMap && this.gradientMap.isTexture ) { data.gradientMap = this.gradientMap.toJSON( meta ).uuid; } if ( this.size !== undefined ) { data.size = this.size; } if ( this.sizeAttenuation !== undefined ) { data.sizeAttenuation = this.sizeAttenuation; } if ( this.blending !== NormalBlending ) { data.blending = this.blending; } if ( this.flatShading === true ) { data.flatShading = this.flatShading; } if ( this.side !== FrontSide ) { data.side = this.side; } if ( this.vertexColors ) { data.vertexColors = true; } if ( this.opacity < 1 ) { data.opacity = this.opacity; } if ( this.transparent === true ) { data.transparent = this.transparent; } data.depthFunc = this.depthFunc; data.depthTest = this.depthTest; data.depthWrite = this.depthWrite; data.stencilWrite = this.stencilWrite; data.stencilWriteMask = this.stencilWriteMask; data.stencilFunc = this.stencilFunc; data.stencilRef = this.stencilRef; data.stencilFuncMask = this.stencilFuncMask; data.stencilFail = this.stencilFail; data.stencilZFail = this.stencilZFail; data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial) if ( this.rotation && this.rotation !== 0 ) { data.rotation = this.rotation; } if ( this.polygonOffset === true ) { data.polygonOffset = true; } if ( this.polygonOffsetFactor !== 0 ) { data.polygonOffsetFactor = this.polygonOffsetFactor; } if ( this.polygonOffsetUnits !== 0 ) { data.polygonOffsetUnits = this.polygonOffsetUnits; } if ( this.linewidth && this.linewidth !== 1 ) { data.linewidth = this.linewidth; } if ( this.dashSize !== undefined ) { data.dashSize = this.dashSize; } if ( this.gapSize !== undefined ) { data.gapSize = this.gapSize; } if ( this.scale !== undefined ) { data.scale = this.scale; } if ( this.dithering === true ) { data.dithering = true; } if ( this.alphaTest > 0 ) { data.alphaTest = this.alphaTest; } if ( this.premultipliedAlpha === true ) { data.premultipliedAlpha = this.premultipliedAlpha; } if ( this.wireframe === true ) { data.wireframe = this.wireframe; } if ( this.wireframeLinewidth > 1 ) { data.wireframeLinewidth = this.wireframeLinewidth; } if ( this.wireframeLinecap !== 'round' ) { data.wireframeLinecap = this.wireframeLinecap; } if ( this.wireframeLinejoin !== 'round' ) { data.wireframeLinejoin = this.wireframeLinejoin; } if ( this.morphTargets === true ) { data.morphTargets = true; } if ( this.morphNormals === true ) { data.morphNormals = true; } if ( this.skinning === true ) { data.skinning = true; } if ( this.visible === false ) { data.visible = false; } if ( this.toneMapped === false ) { data.toneMapped = false; } if ( JSON.stringify( this.userData ) !== '{}' ) { data.userData = this.userData; } // TODO: Copied from Object3D.toJSON function extractFromCache( cache ) { var values = []; for ( var key in cache ) { var data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRoot ) { var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); if ( textures.length > 0 ) { data.textures = textures; } if ( images.length > 0 ) { data.images = images; } } return data; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.name = source.name; this.fog = source.fog; this.blending = source.blending; this.side = source.side; this.flatShading = source.flatShading; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.stencilWriteMask = source.stencilWriteMask; this.stencilFunc = source.stencilFunc; this.stencilRef = source.stencilRef; this.stencilFuncMask = source.stencilFuncMask; this.stencilFail = source.stencilFail; this.stencilZFail = source.stencilZFail; this.stencilZPass = source.stencilZPass; this.stencilWrite = source.stencilWrite; var srcPlanes = source.clippingPlanes; var dstPlanes = null; if ( srcPlanes !== null ) { var n = srcPlanes.length; dstPlanes = new Array( n ); for ( var i = 0; i !== n; ++ i ) { dstPlanes[ i ] = srcPlanes[ i ].clone(); } } this.clippingPlanes = dstPlanes; this.clipIntersection = source.clipIntersection; this.clipShadows = source.clipShadows; this.shadowSide = source.shadowSide; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.dithering = source.dithering; this.alphaTest = source.alphaTest; this.premultipliedAlpha = source.premultipliedAlpha; this.visible = source.visible; this.toneMapped = source.toneMapped; this.userData = JSON.parse( JSON.stringify( source.userData ) ); return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); Object.defineProperty( Material.prototype, 'needsUpdate', { set: function ( value ) { if ( value === true ) { this.version ++; } } } ); /** * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: * } */ function MeshBasicMaterial( parameters ) { Material.call( this ); this.type = 'MeshBasicMaterial'; this.color = new Color( 0xffffff ); // emissive this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.setValues( parameters ); } MeshBasicMaterial.prototype = Object.create( Material.prototype ); MeshBasicMaterial.prototype.constructor = MeshBasicMaterial; MeshBasicMaterial.prototype.isMeshBasicMaterial = true; MeshBasicMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; return this; }; var _vector$3 = new Vector3(); var _vector2$1 = new Vector2(); function BufferAttribute( array, itemSize, normalized ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.name = ''; this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized === true; this.usage = StaticDrawUsage; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; } Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', { set: function ( value ) { if ( value === true ) { this.version ++; } } } ); Object.assign( BufferAttribute.prototype, { isBufferAttribute: true, onUploadCallback: function () {}, setUsage: function ( value ) { this.usage = value; return this; }, copy: function ( source ) { this.name = source.name; this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.usage = source.usage; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.itemSize; index2 *= attribute.itemSize; for ( var i = 0, l = this.itemSize; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, copyArray: function ( array ) { this.array.set( array ); return this; }, copyColorsArray: function ( colors ) { var array = this.array; var offset = 0; for ( var i = 0, l = colors.length; i < l; i ++ ) { var color = colors[ i ]; if ( color === undefined ) { console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i ); color = new Color(); } array[ offset ++ ] = color.r; array[ offset ++ ] = color.g; array[ offset ++ ] = color.b; } return this; }, copyVector2sArray: function ( vectors ) { var array = this.array; var offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i ); vector = new Vector2(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; } return this; }, copyVector3sArray: function ( vectors ) { var array = this.array; var offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i ); vector = new Vector3(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; } return this; }, copyVector4sArray: function ( vectors ) { var array = this.array; var offset = 0; for ( var i = 0, l = vectors.length; i < l; i ++ ) { var vector = vectors[ i ]; if ( vector === undefined ) { console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i ); vector = new Vector4(); } array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; array[ offset ++ ] = vector.w; } return this; }, applyMatrix3: function ( m ) { if ( this.itemSize === 2 ) { for ( var i = 0, l = this.count; i < l; i ++ ) { _vector2$1.fromBufferAttribute( this, i ); _vector2$1.applyMatrix3( m ); this.setXY( i, _vector2$1.x, _vector2$1.y ); } } else if ( this.itemSize === 3 ) { for ( var i$1 = 0, l$1 = this.count; i$1 < l$1; i$1 ++ ) { _vector$3.fromBufferAttribute( this, i$1 ); _vector$3.applyMatrix3( m ); this.setXYZ( i$1, _vector$3.x, _vector$3.y, _vector$3.z ); } } return this; }, applyMatrix4: function ( m ) { for ( var i = 0, l = this.count; i < l; i ++ ) { _vector$3.x = this.getX( i ); _vector$3.y = this.getY( i ); _vector$3.z = this.getZ( i ); _vector$3.applyMatrix4( m ); this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z ); } return this; }, applyNormalMatrix: function ( m ) { for ( var i = 0, l = this.count; i < l; i ++ ) { _vector$3.x = this.getX( i ); _vector$3.y = this.getY( i ); _vector$3.z = this.getZ( i ); _vector$3.applyNormalMatrix( m ); this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z ); } return this; }, transformDirection: function ( m ) { for ( var i = 0, l = this.count; i < l; i ++ ) { _vector$3.x = this.getX( i ); _vector$3.y = this.getY( i ); _vector$3.z = this.getZ( i ); _vector$3.transformDirection( m ); this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z ); } return this; }, set: function ( value, offset ) { if ( offset === undefined ) { offset = 0; } this.array.set( value, offset ); return this; }, getX: function ( index ) { return this.array[ index * this.itemSize ]; }, setX: function ( index, x ) { this.array[ index * this.itemSize ] = x; return this; }, getY: function ( index ) { return this.array[ index * this.itemSize + 1 ]; }, setY: function ( index, y ) { this.array[ index * this.itemSize + 1 ] = y; return this; }, getZ: function ( index ) { return this.array[ index * this.itemSize + 2 ]; }, setZ: function ( index, z ) { this.array[ index * this.itemSize + 2 ] = z; return this; }, getW: function ( index ) { return this.array[ index * this.itemSize + 3 ]; }, setW: function ( index, w ) { this.array[ index * this.itemSize + 3 ] = w; return this; }, setXY: function ( index, x, y ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index *= this.itemSize; this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; }, onUpload: function ( callback ) { this.onUploadCallback = callback; return this; }, clone: function () { return new this.constructor( this.array, this.itemSize ).copy( this ); }, toJSON: function () { return { itemSize: this.itemSize, type: this.array.constructor.name, array: Array.prototype.slice.call( this.array ), normalized: this.normalized }; } } ); // function Int8BufferAttribute( array, itemSize, normalized ) { BufferAttribute.call( this, new Int8Array( array ), itemSize, normalized ); } Int8BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Int8BufferAttribute.prototype.constructor = Int8BufferAttribute; function Uint8BufferAttribute( array, itemSize, normalized ) { BufferAttribute.call( this, new Uint8Array( array ), itemSize, normalized ); } Uint8BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute; function Uint8ClampedBufferAttribute( array, itemSize, normalized ) { BufferAttribute.call( this, new Uint8ClampedArray( array ), itemSize, normalized ); } Uint8ClampedBufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute; function Int16BufferAttribute( array, itemSize, normalized ) { BufferAttribute.call( this, new Int16Array( array ), itemSize, normalized ); } Int16BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Int16BufferAttribute.prototype.constructor = Int16BufferAttribute; function Uint16BufferAttribute( array, itemSize, normalized ) { BufferAttribute.call( this, new Uint16Array( array ), itemSize, normalized ); } Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute; function Int32BufferAttribute( array, itemSize, normalized ) { BufferAttribute.call( this, new Int32Array( array ), itemSize, normalized ); } Int32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Int32BufferAttribute.prototype.constructor = Int32BufferAttribute; function Uint32BufferAttribute( array, itemSize, normalized ) { BufferAttribute.call( this, new Uint32Array( array ), itemSize, normalized ); } Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute; function Float32BufferAttribute( array, itemSize, normalized ) { BufferAttribute.call( this, new Float32Array( array ), itemSize, normalized ); } Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Float32BufferAttribute.prototype.constructor = Float32BufferAttribute; function Float64BufferAttribute( array, itemSize, normalized ) { BufferAttribute.call( this, new Float64Array( array ), itemSize, normalized ); } Float64BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Float64BufferAttribute.prototype.constructor = Float64BufferAttribute; var DirectGeometry = function DirectGeometry() { this.vertices = []; this.normals = []; this.colors = []; this.uvs = []; this.uvs2 = []; this.groups = []; this.morphTargets = {}; this.skinWeights = []; this.skinIndices = []; // this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.verticesNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.uvsNeedUpdate = false; this.groupsNeedUpdate = false; }; DirectGeometry.prototype.computeGroups = function computeGroups ( geometry ) { var groups = []; var group, i; var materialIndex = undefined; var faces = geometry.faces; for ( i = 0; i < faces.length; i ++ ) { var face = faces[ i ]; // materials if ( face.materialIndex !== materialIndex ) { materialIndex = face.materialIndex; if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } group = { start: i * 3, materialIndex: materialIndex }; } } if ( group !== undefined ) { group.count = ( i * 3 ) - group.start; groups.push( group ); } this.groups = groups; }; DirectGeometry.prototype.fromGeometry = function fromGeometry ( geometry ) { var faces = geometry.faces; var vertices = geometry.vertices; var faceVertexUvs = geometry.faceVertexUvs; var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0; var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0; // morphs var morphTargets = geometry.morphTargets; var morphTargetsLength = morphTargets.length; var morphTargetsPosition; if ( morphTargetsLength > 0 ) { morphTargetsPosition = []; for ( var i = 0; i < morphTargetsLength; i ++ ) { morphTargetsPosition[ i ] = { name: morphTargets[ i ].name, data: [] }; } this.morphTargets.position = morphTargetsPosition; } var morphNormals = geometry.morphNormals; var morphNormalsLength = morphNormals.length; var morphTargetsNormal; if ( morphNormalsLength > 0 ) { morphTargetsNormal = []; for ( var i$1 = 0; i$1 < morphNormalsLength; i$1 ++ ) { morphTargetsNormal[ i$1 ] = { name: morphNormals[ i$1 ].name, data: [] }; } this.morphTargets.normal = morphTargetsNormal; } // skins var skinIndices = geometry.skinIndices; var skinWeights = geometry.skinWeights; var hasSkinIndices = skinIndices.length === vertices.length; var hasSkinWeights = skinWeights.length === vertices.length; // if ( vertices.length > 0 && faces.length === 0 ) { console.error( 'THREE.DirectGeometry: Faceless geometries are not supported.' ); } for ( var i$2 = 0; i$2 < faces.length; i$2 ++ ) { var face = faces[ i$2 ]; this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] ); var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] ); } else { var normal = face.normal; this.normals.push( normal, normal, normal ); } var vertexColors = face.vertexColors; if ( vertexColors.length === 3 ) { this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] ); } else { var color = face.color; this.colors.push( color, color, color ); } if ( hasFaceVertexUv === true ) { var vertexUvs = faceVertexUvs[ 0 ][ i$2 ]; if ( vertexUvs !== undefined ) { this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i$2 ); this.uvs.push( new Vector2(), new Vector2(), new Vector2() ); } } if ( hasFaceVertexUv2 === true ) { var vertexUvs$1 = faceVertexUvs[ 1 ][ i$2 ]; if ( vertexUvs$1 !== undefined ) { this.uvs2.push( vertexUvs$1[ 0 ], vertexUvs$1[ 1 ], vertexUvs$1[ 2 ] ); } else { console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i$2 ); this.uvs2.push( new Vector2(), new Vector2(), new Vector2() ); } } // morphs for ( var j = 0; j < morphTargetsLength; j ++ ) { var morphTarget = morphTargets[ j ].vertices; morphTargetsPosition[ j ].data.push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] ); } for ( var j$1 = 0; j$1 < morphNormalsLength; j$1 ++ ) { var morphNormal = morphNormals[ j$1 ].vertexNormals[ i$2 ]; morphTargetsNormal[ j$1 ].data.push( morphNormal.a, morphNormal.b, morphNormal.c ); } // skins if ( hasSkinIndices ) { this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] ); } if ( hasSkinWeights ) { this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] ); } } this.computeGroups( geometry ); this.verticesNeedUpdate = geometry.verticesNeedUpdate; this.normalsNeedUpdate = geometry.normalsNeedUpdate; this.colorsNeedUpdate = geometry.colorsNeedUpdate; this.uvsNeedUpdate = geometry.uvsNeedUpdate; this.groupsNeedUpdate = geometry.groupsNeedUpdate; if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } return this; }; function arrayMax( array ) { if ( array.length === 0 ) { return - Infinity; } var max = array[ 0 ]; for ( var i = 1, l = array.length; i < l; ++ i ) { if ( array[ i ] > max ) { max = array[ i ]; } } return max; } var _bufferGeometryId = 1; // BufferGeometry uses odd numbers as Id var _m1$2 = new Matrix4(); var _obj = new Object3D(); var _offset = new Vector3(); var _box$2 = new Box3(); var _boxMorphTargets = new Box3(); var _vector$4 = new Vector3(); function BufferGeometry() { Object.defineProperty( this, 'id', { value: _bufferGeometryId += 2 } ); this.uuid = MathUtils.generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.morphTargetsRelative = false; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; this.userData = {}; } BufferGeometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { constructor: BufferGeometry, isBufferGeometry: true, getIndex: function () { return this.index; }, setIndex: function ( index ) { if ( Array.isArray( index ) ) { this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 ); } else { this.index = index; } }, getAttribute: function ( name ) { return this.attributes[ name ]; }, setAttribute: function ( name, attribute ) { this.attributes[ name ] = attribute; return this; }, deleteAttribute: function ( name ) { delete this.attributes[ name ]; return this; }, addGroup: function ( start, count, materialIndex ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex !== undefined ? materialIndex : 0 } ); }, clearGroups: function () { this.groups = []; }, setDrawRange: function ( start, count ) { this.drawRange.start = start; this.drawRange.count = count; }, applyMatrix4: function ( matrix ) { var position = this.attributes.position; if ( position !== undefined ) { position.applyMatrix4( matrix ); position.needsUpdate = true; } var normal = this.attributes.normal; if ( normal !== undefined ) { var normalMatrix = new Matrix3().getNormalMatrix( matrix ); normal.applyNormalMatrix( normalMatrix ); normal.needsUpdate = true; } var tangent = this.attributes.tangent; if ( tangent !== undefined ) { tangent.transformDirection( matrix ); tangent.needsUpdate = true; } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } return this; }, rotateX: function ( angle ) { // rotate geometry around world x-axis _m1$2.makeRotationX( angle ); this.applyMatrix4( _m1$2 ); return this; }, rotateY: function ( angle ) { // rotate geometry around world y-axis _m1$2.makeRotationY( angle ); this.applyMatrix4( _m1$2 ); return this; }, rotateZ: function ( angle ) { // rotate geometry around world z-axis _m1$2.makeRotationZ( angle ); this.applyMatrix4( _m1$2 ); return this; }, translate: function ( x, y, z ) { // translate geometry _m1$2.makeTranslation( x, y, z ); this.applyMatrix4( _m1$2 ); return this; }, scale: function ( x, y, z ) { // scale geometry _m1$2.makeScale( x, y, z ); this.applyMatrix4( _m1$2 ); return this; }, lookAt: function ( vector ) { _obj.lookAt( vector ); _obj.updateMatrix(); this.applyMatrix4( _obj.matrix ); return this; }, center: function () { this.computeBoundingBox(); this.boundingBox.getCenter( _offset ).negate(); this.translate( _offset.x, _offset.y, _offset.z ); return this; }, setFromObject: function ( object ) { // console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this ); var geometry = object.geometry; if ( object.isPoints || object.isLine ) { var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 ); var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 ); this.setAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) ); this.setAttribute( 'color', colors.copyColorsArray( geometry.colors ) ); if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) { var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 ); this.setAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) ); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } } else if ( object.isMesh ) { if ( geometry && geometry.isGeometry ) { this.fromGeometry( geometry ); } } return this; }, setFromPoints: function ( points ) { var position = []; for ( var i = 0, l = points.length; i < l; i ++ ) { var point = points[ i ]; position.push( point.x, point.y, point.z || 0 ); } this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) ); return this; }, updateFromObject: function ( object ) { var geometry = object.geometry; if ( object.isMesh ) { var direct = geometry.__directGeometry; if ( geometry.elementsNeedUpdate === true ) { direct = undefined; geometry.elementsNeedUpdate = false; } if ( direct === undefined ) { return this.fromGeometry( geometry ); } direct.verticesNeedUpdate = geometry.verticesNeedUpdate; direct.normalsNeedUpdate = geometry.normalsNeedUpdate; direct.colorsNeedUpdate = geometry.colorsNeedUpdate; direct.uvsNeedUpdate = geometry.uvsNeedUpdate; direct.groupsNeedUpdate = geometry.groupsNeedUpdate; geometry.verticesNeedUpdate = false; geometry.normalsNeedUpdate = false; geometry.colorsNeedUpdate = false; geometry.uvsNeedUpdate = false; geometry.groupsNeedUpdate = false; geometry = direct; } if ( geometry.verticesNeedUpdate === true ) { var attribute = this.attributes.position; if ( attribute !== undefined ) { attribute.copyVector3sArray( geometry.vertices ); attribute.needsUpdate = true; } geometry.verticesNeedUpdate = false; } if ( geometry.normalsNeedUpdate === true ) { var attribute$1 = this.attributes.normal; if ( attribute$1 !== undefined ) { attribute$1.copyVector3sArray( geometry.normals ); attribute$1.needsUpdate = true; } geometry.normalsNeedUpdate = false; } if ( geometry.colorsNeedUpdate === true ) { var attribute$2 = this.attributes.color; if ( attribute$2 !== undefined ) { attribute$2.copyColorsArray( geometry.colors ); attribute$2.needsUpdate = true; } geometry.colorsNeedUpdate = false; } if ( geometry.uvsNeedUpdate ) { var attribute$3 = this.attributes.uv; if ( attribute$3 !== undefined ) { attribute$3.copyVector2sArray( geometry.uvs ); attribute$3.needsUpdate = true; } geometry.uvsNeedUpdate = false; } if ( geometry.lineDistancesNeedUpdate ) { var attribute$4 = this.attributes.lineDistance; if ( attribute$4 !== undefined ) { attribute$4.copyArray( geometry.lineDistances ); attribute$4.needsUpdate = true; } geometry.lineDistancesNeedUpdate = false; } if ( geometry.groupsNeedUpdate ) { geometry.computeGroups( object.geometry ); this.groups = geometry.groups; geometry.groupsNeedUpdate = false; } return this; }, fromGeometry: function ( geometry ) { geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry ); return this.fromDirectGeometry( geometry.__directGeometry ); }, fromDirectGeometry: function ( geometry ) { var positions = new Float32Array( geometry.vertices.length * 3 ); this.setAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) ); if ( geometry.normals.length > 0 ) { var normals = new Float32Array( geometry.normals.length * 3 ); this.setAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) ); } if ( geometry.colors.length > 0 ) { var colors = new Float32Array( geometry.colors.length * 3 ); this.setAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) ); } if ( geometry.uvs.length > 0 ) { var uvs = new Float32Array( geometry.uvs.length * 2 ); this.setAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) ); } if ( geometry.uvs2.length > 0 ) { var uvs2 = new Float32Array( geometry.uvs2.length * 2 ); this.setAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) ); } // groups this.groups = geometry.groups; // morphs for ( var name in geometry.morphTargets ) { var array = []; var morphTargets = geometry.morphTargets[ name ]; for ( var i = 0, l = morphTargets.length; i < l; i ++ ) { var morphTarget = morphTargets[ i ]; var attribute = new Float32BufferAttribute( morphTarget.data.length * 3, 3 ); attribute.name = morphTarget.name; array.push( attribute.copyVector3sArray( morphTarget.data ) ); } this.morphAttributes[ name ] = array; } // skinning if ( geometry.skinIndices.length > 0 ) { var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 ); this.setAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) ); } if ( geometry.skinWeights.length > 0 ) { var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 ); this.setAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) ); } // if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } return this; }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } var position = this.attributes.position; var morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this ); this.boundingBox.set( new Vector3( - Infinity, - Infinity, - Infinity ), new Vector3( + Infinity, + Infinity, + Infinity ) ); return; } if ( position !== undefined ) { this.boundingBox.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { var morphAttribute = morphAttributesPosition[ i ]; _box$2.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$4.addVectors( this.boundingBox.min, _box$2.min ); this.boundingBox.expandByPoint( _vector$4 ); _vector$4.addVectors( this.boundingBox.max, _box$2.max ); this.boundingBox.expandByPoint( _vector$4 ); } else { this.boundingBox.expandByPoint( _box$2.min ); this.boundingBox.expandByPoint( _box$2.max ); } } } } else { this.boundingBox.makeEmpty(); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); } }, computeBoundingSphere: function () { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } var position = this.attributes.position; var morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this ); this.boundingSphere.set( new Vector3(), Infinity ); return; } if ( position ) { // first, find the center of the bounding sphere var center = this.boundingSphere.center; _box$2.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { var morphAttribute = morphAttributesPosition[ i ]; _boxMorphTargets.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$4.addVectors( _box$2.min, _boxMorphTargets.min ); _box$2.expandByPoint( _vector$4 ); _vector$4.addVectors( _box$2.max, _boxMorphTargets.max ); _box$2.expandByPoint( _vector$4 ); } else { _box$2.expandByPoint( _boxMorphTargets.min ); _box$2.expandByPoint( _boxMorphTargets.max ); } } } _box$2.getCenter( center ); // second, try to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case var maxRadiusSq = 0; for ( var i$1 = 0, il$1 = position.count; i$1 < il$1; i$1 ++ ) { _vector$4.fromBufferAttribute( position, i$1 ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) ); } // process morph attributes if present if ( morphAttributesPosition ) { for ( var i$2 = 0, il$2 = morphAttributesPosition.length; i$2 < il$2; i$2 ++ ) { var morphAttribute$1 = morphAttributesPosition[ i$2 ]; var morphTargetsRelative = this.morphTargetsRelative; for ( var j = 0, jl = morphAttribute$1.count; j < jl; j ++ ) { _vector$4.fromBufferAttribute( morphAttribute$1, j ); if ( morphTargetsRelative ) { _offset.fromBufferAttribute( position, j ); _vector$4.add( _offset ); } maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) ); } } } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); } } }, computeFaceNormals: function () { // backwards compatibility }, computeVertexNormals: function () { var index = this.index; var positionAttribute = this.getAttribute( 'position' ); if ( positionAttribute !== undefined ) { var normalAttribute = this.getAttribute( 'normal' ); if ( normalAttribute === undefined ) { normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 ); this.setAttribute( 'normal', normalAttribute ); } else { // reset existing normals to zero for ( var i = 0, il = normalAttribute.count; i < il; i ++ ) { normalAttribute.setXYZ( i, 0, 0, 0 ); } } var pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); var nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); var cb = new Vector3(), ab = new Vector3(); // indexed elements if ( index ) { for ( var i$1 = 0, il$1 = index.count; i$1 < il$1; i$1 += 3 ) { var vA = index.getX( i$1 + 0 ); var vB = index.getX( i$1 + 1 ); var vC = index.getX( i$1 + 2 ); pA.fromBufferAttribute( positionAttribute, vA ); pB.fromBufferAttribute( positionAttribute, vB ); pC.fromBufferAttribute( positionAttribute, vC ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); nA.fromBufferAttribute( normalAttribute, vA ); nB.fromBufferAttribute( normalAttribute, vB ); nC.fromBufferAttribute( normalAttribute, vC ); nA.add( cb ); nB.add( cb ); nC.add( cb ); normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z ); normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z ); normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z ); } } else { // non-indexed elements (unconnected triangle soup) for ( var i$2 = 0, il$2 = positionAttribute.count; i$2 < il$2; i$2 += 3 ) { pA.fromBufferAttribute( positionAttribute, i$2 + 0 ); pB.fromBufferAttribute( positionAttribute, i$2 + 1 ); pC.fromBufferAttribute( positionAttribute, i$2 + 2 ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normalAttribute.setXYZ( i$2 + 0, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i$2 + 1, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i$2 + 2, cb.x, cb.y, cb.z ); } } this.normalizeNormals(); normalAttribute.needsUpdate = true; } }, merge: function ( geometry, offset ) { if ( ! ( geometry && geometry.isBufferGeometry ) ) { console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ); return; } if ( offset === undefined ) { offset = 0; console.warn( 'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.' ); } var attributes = this.attributes; for ( var key in attributes ) { if ( geometry.attributes[ key ] === undefined ) { continue; } var attribute1 = attributes[ key ]; var attributeArray1 = attribute1.array; var attribute2 = geometry.attributes[ key ]; var attributeArray2 = attribute2.array; var attributeOffset = attribute2.itemSize * offset; var length = Math.min( attributeArray2.length, attributeArray1.length - attributeOffset ); for ( var i = 0, j = attributeOffset; i < length; i ++, j ++ ) { attributeArray1[ j ] = attributeArray2[ i ]; } } return this; }, normalizeNormals: function () { var normals = this.attributes.normal; for ( var i = 0, il = normals.count; i < il; i ++ ) { _vector$4.fromBufferAttribute( normals, i ); _vector$4.normalize(); normals.setXYZ( i, _vector$4.x, _vector$4.y, _vector$4.z ); } }, toNonIndexed: function () { function convertBufferAttribute( attribute, indices ) { var array = attribute.array; var itemSize = attribute.itemSize; var normalized = attribute.normalized; var array2 = new array.constructor( indices.length * itemSize ); var index = 0, index2 = 0; for ( var i = 0, l = indices.length; i < l; i ++ ) { index = indices[ i ] * itemSize; for ( var j = 0; j < itemSize; j ++ ) { array2[ index2 ++ ] = array[ index ++ ]; } } return new BufferAttribute( array2, itemSize, normalized ); } // if ( this.index === null ) { console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' ); return this; } var geometry2 = new BufferGeometry(); var indices = this.index.array; var attributes = this.attributes; // attributes for ( var name in attributes ) { var attribute = attributes[ name ]; var newAttribute = convertBufferAttribute( attribute, indices ); geometry2.setAttribute( name, newAttribute ); } // morph attributes var morphAttributes = this.morphAttributes; for ( var name$1 in morphAttributes ) { var morphArray = []; var morphAttribute = morphAttributes[ name$1 ]; // morphAttribute: array of Float32BufferAttributes for ( var i = 0, il = morphAttribute.length; i < il; i ++ ) { var attribute$1 = morphAttribute[ i ]; var newAttribute$1 = convertBufferAttribute( attribute$1, indices ); morphArray.push( newAttribute$1 ); } geometry2.morphAttributes[ name$1 ] = morphArray; } geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups var groups = this.groups; for ( var i$1 = 0, l = groups.length; i$1 < l; i$1 ++ ) { var group = groups[ i$1 ]; geometry2.addGroup( group.start, group.count, group.materialIndex ); } return geometry2; }, toJSON: function () { var data = { metadata: { version: 4.5, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) { data.name = this.name; } if ( Object.keys( this.userData ).length > 0 ) { data.userData = this.userData; } if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) { data[ key ] = parameters[ key ]; } } return data; } data.data = { attributes: {} }; var index = this.index; if ( index !== null ) { data.data.index = { type: index.array.constructor.name, array: Array.prototype.slice.call( index.array ) }; } var attributes = this.attributes; for ( var key$1 in attributes ) { var attribute = attributes[ key$1 ]; var attributeData = attribute.toJSON( data.data ); if ( attribute.name !== '' ) { attributeData.name = attribute.name; } data.data.attributes[ key$1 ] = attributeData; } var morphAttributes = {}; var hasMorphAttributes = false; for ( var key$2 in this.morphAttributes ) { var attributeArray = this.morphAttributes[ key$2 ]; var array = []; for ( var i = 0, il = attributeArray.length; i < il; i ++ ) { var attribute$1 = attributeArray[ i ]; var attributeData$1 = attribute$1.toJSON( data.data ); if ( attribute$1.name !== '' ) { attributeData$1.name = attribute$1.name; } array.push( attributeData$1 ); } if ( array.length > 0 ) { morphAttributes[ key$2 ] = array; hasMorphAttributes = true; } } if ( hasMorphAttributes ) { data.data.morphAttributes = morphAttributes; data.data.morphTargetsRelative = this.morphTargetsRelative; } var groups = this.groups; if ( groups.length > 0 ) { data.data.groups = JSON.parse( JSON.stringify( groups ) ); } var boundingSphere = this.boundingSphere; if ( boundingSphere !== null ) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; }, clone: function () { /* // Handle primitives const parameters = this.parameters; if ( parameters !== undefined ) { const values = []; for ( const key in parameters ) { values.push( parameters[ key ] ); } const geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new BufferGeometry().copy( this ); }, copy: function ( source ) { // reset this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; // used for storing cloned, shared data var data = {}; // name this.name = source.name; // index var index = source.index; if ( index !== null ) { this.setIndex( index.clone( data ) ); } // attributes var attributes = source.attributes; for ( var name in attributes ) { var attribute = attributes[ name ]; this.setAttribute( name, attribute.clone( data ) ); } // morph attributes var morphAttributes = source.morphAttributes; for ( var name$1 in morphAttributes ) { var array = []; var morphAttribute = morphAttributes[ name$1 ]; // morphAttribute: array of Float32BufferAttributes for ( var i = 0, l = morphAttribute.length; i < l; i ++ ) { array.push( morphAttribute[ i ].clone( data ) ); } this.morphAttributes[ name$1 ] = array; } this.morphTargetsRelative = source.morphTargetsRelative; // groups var groups = source.groups; for ( var i$1 = 0, l$1 = groups.length; i$1 < l$1; i$1 ++ ) { var group = groups[ i$1 ]; this.addGroup( group.start, group.count, group.materialIndex ); } // bounding box var boundingBox = source.boundingBox; if ( boundingBox !== null ) { this.boundingBox = boundingBox.clone(); } // bounding sphere var boundingSphere = source.boundingSphere; if ( boundingSphere !== null ) { this.boundingSphere = boundingSphere.clone(); } // draw range this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count; // user data this.userData = source.userData; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); var _inverseMatrix = new Matrix4(); var _ray = new Ray(); var _sphere = new Sphere(); var _vA = new Vector3(); var _vB = new Vector3(); var _vC = new Vector3(); var _tempA = new Vector3(); var _tempB = new Vector3(); var _tempC = new Vector3(); var _morphA = new Vector3(); var _morphB = new Vector3(); var _morphC = new Vector3(); var _uvA = new Vector2(); var _uvB = new Vector2(); var _uvC = new Vector2(); var _intersectionPoint = new Vector3(); var _intersectionPointWorld = new Vector3(); function Mesh( geometry, material ) { Object3D.call( this ); this.type = 'Mesh'; this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new MeshBasicMaterial(); this.updateMorphTargets(); } Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Mesh, isMesh: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); if ( source.morphTargetInfluences !== undefined ) { this.morphTargetInfluences = source.morphTargetInfluences.slice(); } if ( source.morphTargetDictionary !== undefined ) { this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary ); } this.material = source.material; this.geometry = source.geometry; return this; }, updateMorphTargets: function () { var geometry = this.geometry; if ( geometry.isBufferGeometry ) { var morphAttributes = geometry.morphAttributes; var keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { var morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( var m = 0, ml = morphAttribute.length; m < ml; m ++ ) { var name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } else { var morphTargets = geometry.morphTargets; if ( morphTargets !== undefined && morphTargets.length > 0 ) { console.error( 'THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); } } }, raycast: function ( raycaster, intersects ) { var geometry = this.geometry; var material = this.material; var matrixWorld = this.matrixWorld; if ( material === undefined ) { return; } // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } _sphere.copy( geometry.boundingSphere ); _sphere.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( _sphere ) === false ) { return; } // _inverseMatrix.getInverse( matrixWorld ); _ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix ); // Check boundingBox before continuing if ( geometry.boundingBox !== null ) { if ( _ray.intersectsBox( geometry.boundingBox ) === false ) { return; } } var intersection; if ( geometry.isBufferGeometry ) { var index = geometry.index; var position = geometry.attributes.position; var morphPosition = geometry.morphAttributes.position; var morphTargetsRelative = geometry.morphTargetsRelative; var uv = geometry.attributes.uv; var uv2 = geometry.attributes.uv2; var groups = geometry.groups; var drawRange = geometry.drawRange; if ( index !== null ) { // indexed buffer geometry if ( Array.isArray( material ) ) { for ( var i = 0, il = groups.length; i < il; i ++ ) { var group = groups[ i ]; var groupMaterial = material[ group.materialIndex ]; var start = Math.max( group.start, drawRange.start ); var end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ); for ( var j = start, jl = end; j < jl; j += 3 ) { var a = index.getX( j ); var b = index.getX( j + 1 ); var c = index.getX( j + 2 ); intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push( intersection ); } } } } else { var start$1 = Math.max( 0, drawRange.start ); var end$1 = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( var i$1 = start$1, il$1 = end$1; i$1 < il$1; i$1 += 3 ) { var a$1 = index.getX( i$1 ); var b$1 = index.getX( i$1 + 1 ); var c$1 = index.getX( i$1 + 2 ); intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a$1, b$1, c$1 ); if ( intersection ) { intersection.faceIndex = Math.floor( i$1 / 3 ); // triangle number in indexed buffer semantics intersects.push( intersection ); } } } } else if ( position !== undefined ) { // non-indexed buffer geometry if ( Array.isArray( material ) ) { for ( var i$2 = 0, il$2 = groups.length; i$2 < il$2; i$2 ++ ) { var group$1 = groups[ i$2 ]; var groupMaterial$1 = material[ group$1.materialIndex ]; var start$2 = Math.max( group$1.start, drawRange.start ); var end$2 = Math.min( ( group$1.start + group$1.count ), ( drawRange.start + drawRange.count ) ); for ( var j$1 = start$2, jl$1 = end$2; j$1 < jl$1; j$1 += 3 ) { var a$2 = j$1; var b$2 = j$1 + 1; var c$2 = j$1 + 2; intersection = checkBufferGeometryIntersection( this, groupMaterial$1, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a$2, b$2, c$2 ); if ( intersection ) { intersection.faceIndex = Math.floor( j$1 / 3 ); // triangle number in non-indexed buffer semantics intersection.face.materialIndex = group$1.materialIndex; intersects.push( intersection ); } } } } else { var start$3 = Math.max( 0, drawRange.start ); var end$3 = Math.min( position.count, ( drawRange.start + drawRange.count ) ); for ( var i$3 = start$3, il$3 = end$3; i$3 < il$3; i$3 += 3 ) { var a$3 = i$3; var b$3 = i$3 + 1; var c$3 = i$3 + 2; intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a$3, b$3, c$3 ); if ( intersection ) { intersection.faceIndex = Math.floor( i$3 / 3 ); // triangle number in non-indexed buffer semantics intersects.push( intersection ); } } } } } else if ( geometry.isGeometry ) { var isMultiMaterial = Array.isArray( material ); var vertices = geometry.vertices; var faces = geometry.faces; var uvs; var faceVertexUvs = geometry.faceVertexUvs[ 0 ]; if ( faceVertexUvs.length > 0 ) { uvs = faceVertexUvs; } for ( var f = 0, fl = faces.length; f < fl; f ++ ) { var face = faces[ f ]; var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material; if ( faceMaterial === undefined ) { continue; } var fvA = vertices[ face.a ]; var fvB = vertices[ face.b ]; var fvC = vertices[ face.c ]; intersection = checkIntersection( this, faceMaterial, raycaster, _ray, fvA, fvB, fvC, _intersectionPoint ); if ( intersection ) { if ( uvs && uvs[ f ] ) { var uvs_f = uvs[ f ]; _uvA.copy( uvs_f[ 0 ] ); _uvB.copy( uvs_f[ 1 ] ); _uvC.copy( uvs_f[ 2 ] ); intersection.uv = Triangle.getUV( _intersectionPoint, fvA, fvB, fvC, _uvA, _uvB, _uvC, new Vector2() ); } intersection.face = face; intersection.faceIndex = f; intersects.push( intersection ); } } } } } ); function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) { var intersect; if ( material.side === BackSide ) { intersect = ray.intersectTriangle( pC, pB, pA, true, point ); } else { intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point ); } if ( intersect === null ) { return null; } _intersectionPointWorld.copy( point ); _intersectionPointWorld.applyMatrix4( object.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld ); if ( distance < raycaster.near || distance > raycaster.far ) { return null; } return { distance: distance, point: _intersectionPointWorld.clone(), object: object }; } function checkBufferGeometryIntersection( object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ) { _vA.fromBufferAttribute( position, a ); _vB.fromBufferAttribute( position, b ); _vC.fromBufferAttribute( position, c ); var morphInfluences = object.morphTargetInfluences; if ( material.morphTargets && morphPosition && morphInfluences ) { _morphA.set( 0, 0, 0 ); _morphB.set( 0, 0, 0 ); _morphC.set( 0, 0, 0 ); for ( var i = 0, il = morphPosition.length; i < il; i ++ ) { var influence = morphInfluences[ i ]; var morphAttribute = morphPosition[ i ]; if ( influence === 0 ) { continue; } _tempA.fromBufferAttribute( morphAttribute, a ); _tempB.fromBufferAttribute( morphAttribute, b ); _tempC.fromBufferAttribute( morphAttribute, c ); if ( morphTargetsRelative ) { _morphA.addScaledVector( _tempA, influence ); _morphB.addScaledVector( _tempB, influence ); _morphC.addScaledVector( _tempC, influence ); } else { _morphA.addScaledVector( _tempA.sub( _vA ), influence ); _morphB.addScaledVector( _tempB.sub( _vB ), influence ); _morphC.addScaledVector( _tempC.sub( _vC ), influence ); } } _vA.add( _morphA ); _vB.add( _morphB ); _vC.add( _morphC ); } if ( object.isSkinnedMesh ) { object.boneTransform( a, _vA ); object.boneTransform( b, _vB ); object.boneTransform( c, _vC ); } var intersection = checkIntersection( object, material, raycaster, ray, _vA, _vB, _vC, _intersectionPoint ); if ( intersection ) { if ( uv ) { _uvA.fromBufferAttribute( uv, a ); _uvB.fromBufferAttribute( uv, b ); _uvC.fromBufferAttribute( uv, c ); intersection.uv = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() ); } if ( uv2 ) { _uvA.fromBufferAttribute( uv2, a ); _uvB.fromBufferAttribute( uv2, b ); _uvC.fromBufferAttribute( uv2, c ); intersection.uv2 = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() ); } var face = new Face3( a, b, c ); Triangle.getNormal( _vA, _vB, _vC, face.normal ); intersection.face = face; } return intersection; } var _geometryId = 0; // Geometry uses even numbers as Id var _m1$3 = new Matrix4(); var _obj$1 = new Object3D(); var _offset$1 = new Vector3(); function Geometry() { Object.defineProperty( this, 'id', { value: _geometryId += 2 } ); this.uuid = MathUtils.generateUUID(); this.name = ''; this.type = 'Geometry'; this.vertices = []; this.colors = []; this.faces = []; this.faceVertexUvs = [[]]; this.morphTargets = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // update flags this.elementsNeedUpdate = false; this.verticesNeedUpdate = false; this.uvsNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.lineDistancesNeedUpdate = false; this.groupsNeedUpdate = false; } Geometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { constructor: Geometry, isGeometry: true, applyMatrix4: function ( matrix ) { var normalMatrix = new Matrix3().getNormalMatrix( matrix ); for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { var vertex = this.vertices[ i ]; vertex.applyMatrix4( matrix ); } for ( var i$1 = 0, il$1 = this.faces.length; i$1 < il$1; i$1 ++ ) { var face = this.faces[ i$1 ]; face.normal.applyMatrix3( normalMatrix ).normalize(); for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize(); } } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } this.verticesNeedUpdate = true; this.normalsNeedUpdate = true; return this; }, rotateX: function ( angle ) { // rotate geometry around world x-axis _m1$3.makeRotationX( angle ); this.applyMatrix4( _m1$3 ); return this; }, rotateY: function ( angle ) { // rotate geometry around world y-axis _m1$3.makeRotationY( angle ); this.applyMatrix4( _m1$3 ); return this; }, rotateZ: function ( angle ) { // rotate geometry around world z-axis _m1$3.makeRotationZ( angle ); this.applyMatrix4( _m1$3 ); return this; }, translate: function ( x, y, z ) { // translate geometry _m1$3.makeTranslation( x, y, z ); this.applyMatrix4( _m1$3 ); return this; }, scale: function ( x, y, z ) { // scale geometry _m1$3.makeScale( x, y, z ); this.applyMatrix4( _m1$3 ); return this; }, lookAt: function ( vector ) { _obj$1.lookAt( vector ); _obj$1.updateMatrix(); this.applyMatrix4( _obj$1.matrix ); return this; }, fromBufferGeometry: function ( geometry ) { var scope = this; var index = geometry.index !== null ? geometry.index : undefined; var attributes = geometry.attributes; if ( attributes.position === undefined ) { console.error( 'THREE.Geometry.fromBufferGeometry(): Position attribute required for conversion.' ); return this; } var position = attributes.position; var normal = attributes.normal; var color = attributes.color; var uv = attributes.uv; var uv2 = attributes.uv2; if ( uv2 !== undefined ) { this.faceVertexUvs[ 1 ] = []; } for ( var i = 0; i < position.count; i ++ ) { scope.vertices.push( new Vector3().fromBufferAttribute( position, i ) ); if ( color !== undefined ) { scope.colors.push( new Color().fromBufferAttribute( color, i ) ); } } function addFace( a, b, c, materialIndex ) { var vertexColors = ( color === undefined ) ? [] : [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ]; var vertexNormals = ( normal === undefined ) ? [] : [ new Vector3().fromBufferAttribute( normal, a ), new Vector3().fromBufferAttribute( normal, b ), new Vector3().fromBufferAttribute( normal, c ) ]; var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex ); scope.faces.push( face ); if ( uv !== undefined ) { scope.faceVertexUvs[ 0 ].push( [ new Vector2().fromBufferAttribute( uv, a ), new Vector2().fromBufferAttribute( uv, b ), new Vector2().fromBufferAttribute( uv, c ) ] ); } if ( uv2 !== undefined ) { scope.faceVertexUvs[ 1 ].push( [ new Vector2().fromBufferAttribute( uv2, a ), new Vector2().fromBufferAttribute( uv2, b ), new Vector2().fromBufferAttribute( uv2, c ) ] ); } } var groups = geometry.groups; if ( groups.length > 0 ) { for ( var i$1 = 0; i$1 < groups.length; i$1 ++ ) { var group = groups[ i$1 ]; var start = group.start; var count = group.count; for ( var j = start, jl = start + count; j < jl; j += 3 ) { if ( index !== undefined ) { addFace( index.getX( j ), index.getX( j + 1 ), index.getX( j + 2 ), group.materialIndex ); } else { addFace( j, j + 1, j + 2, group.materialIndex ); } } } } else { if ( index !== undefined ) { for ( var i$2 = 0; i$2 < index.count; i$2 += 3 ) { addFace( index.getX( i$2 ), index.getX( i$2 + 1 ), index.getX( i$2 + 2 ) ); } } else { for ( var i$3 = 0; i$3 < position.count; i$3 += 3 ) { addFace( i$3, i$3 + 1, i$3 + 2 ); } } } this.computeFaceNormals(); if ( geometry.boundingBox !== null ) { this.boundingBox = geometry.boundingBox.clone(); } if ( geometry.boundingSphere !== null ) { this.boundingSphere = geometry.boundingSphere.clone(); } return this; }, center: function () { this.computeBoundingBox(); this.boundingBox.getCenter( _offset$1 ).negate(); this.translate( _offset$1.x, _offset$1.y, _offset$1.z ); return this; }, normalize: function () { this.computeBoundingSphere(); var center = this.boundingSphere.center; var radius = this.boundingSphere.radius; var s = radius === 0 ? 1 : 1.0 / radius; var matrix = new Matrix4(); matrix.set( s, 0, 0, - s * center.x, 0, s, 0, - s * center.y, 0, 0, s, - s * center.z, 0, 0, 0, 1 ); this.applyMatrix4( matrix ); return this; }, computeFaceNormals: function () { var cb = new Vector3(), ab = new Vector3(); for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { var face = this.faces[ f ]; var vA = this.vertices[ face.a ]; var vB = this.vertices[ face.b ]; var vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); cb.normalize(); face.normal.copy( cb ); } }, computeVertexNormals: function ( areaWeighted ) { if ( areaWeighted === undefined ) { areaWeighted = true; } var vertices = new Array( this.vertices.length ); for ( var v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ] = new Vector3(); } if ( areaWeighted ) { // vertex normals weighted by triangle areas // http://www.iquilezles.org/www/articles/normals/normals.htm var cb = new Vector3(), ab = new Vector3(); for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { var face = this.faces[ f ]; var vA = this.vertices[ face.a ]; var vB = this.vertices[ face.b ]; var vC = this.vertices[ face.c ]; cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab ); vertices[ face.a ].add( cb ); vertices[ face.b ].add( cb ); vertices[ face.c ].add( cb ); } } else { this.computeFaceNormals(); for ( var f$1 = 0, fl$1 = this.faces.length; f$1 < fl$1; f$1 ++ ) { var face$1 = this.faces[ f$1 ]; vertices[ face$1.a ].add( face$1.normal ); vertices[ face$1.b ].add( face$1.normal ); vertices[ face$1.c ].add( face$1.normal ); } } for ( var v$1 = 0, vl$1 = this.vertices.length; v$1 < vl$1; v$1 ++ ) { vertices[ v$1 ].normalize(); } for ( var f$2 = 0, fl$2 = this.faces.length; f$2 < fl$2; f$2 ++ ) { var face$2 = this.faces[ f$2 ]; var vertexNormals = face$2.vertexNormals; if ( vertexNormals.length === 3 ) { vertexNormals[ 0 ].copy( vertices[ face$2.a ] ); vertexNormals[ 1 ].copy( vertices[ face$2.b ] ); vertexNormals[ 2 ].copy( vertices[ face$2.c ] ); } else { vertexNormals[ 0 ] = vertices[ face$2.a ].clone(); vertexNormals[ 1 ] = vertices[ face$2.b ].clone(); vertexNormals[ 2 ] = vertices[ face$2.c ].clone(); } } if ( this.faces.length > 0 ) { this.normalsNeedUpdate = true; } }, computeFlatVertexNormals: function () { this.computeFaceNormals(); for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { var face = this.faces[ f ]; var vertexNormals = face.vertexNormals; if ( vertexNormals.length === 3 ) { vertexNormals[ 0 ].copy( face.normal ); vertexNormals[ 1 ].copy( face.normal ); vertexNormals[ 2 ].copy( face.normal ); } else { vertexNormals[ 0 ] = face.normal.clone(); vertexNormals[ 1 ] = face.normal.clone(); vertexNormals[ 2 ] = face.normal.clone(); } } if ( this.faces.length > 0 ) { this.normalsNeedUpdate = true; } }, computeMorphNormals: function () { // save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls) for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { var face = this.faces[ f ]; if ( ! face.__originalFaceNormal ) { face.__originalFaceNormal = face.normal.clone(); } else { face.__originalFaceNormal.copy( face.normal ); } if ( ! face.__originalVertexNormals ) { face.__originalVertexNormals = []; } for ( var i = 0, il = face.vertexNormals.length; i < il; i ++ ) { if ( ! face.__originalVertexNormals[ i ] ) { face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone(); } else { face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] ); } } } // use temp geometry to compute face and vertex normals for each morph var tmpGeo = new Geometry(); tmpGeo.faces = this.faces; for ( var i$1 = 0, il$1 = this.morphTargets.length; i$1 < il$1; i$1 ++ ) { // create on first access if ( ! this.morphNormals[ i$1 ] ) { this.morphNormals[ i$1 ] = {}; this.morphNormals[ i$1 ].faceNormals = []; this.morphNormals[ i$1 ].vertexNormals = []; var dstNormalsFace = this.morphNormals[ i$1 ].faceNormals; var dstNormalsVertex = this.morphNormals[ i$1 ].vertexNormals; for ( var f$1 = 0, fl$1 = this.faces.length; f$1 < fl$1; f$1 ++ ) { var faceNormal = new Vector3(); var vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() }; dstNormalsFace.push( faceNormal ); dstNormalsVertex.push( vertexNormals ); } } var morphNormals = this.morphNormals[ i$1 ]; // set vertices to morph target tmpGeo.vertices = this.morphTargets[ i$1 ].vertices; // compute morph normals tmpGeo.computeFaceNormals(); tmpGeo.computeVertexNormals(); // store morph normals for ( var f$2 = 0, fl$2 = this.faces.length; f$2 < fl$2; f$2 ++ ) { var face$1 = this.faces[ f$2 ]; var faceNormal$1 = morphNormals.faceNormals[ f$2 ]; var vertexNormals$1 = morphNormals.vertexNormals[ f$2 ]; faceNormal$1.copy( face$1.normal ); vertexNormals$1.a.copy( face$1.vertexNormals[ 0 ] ); vertexNormals$1.b.copy( face$1.vertexNormals[ 1 ] ); vertexNormals$1.c.copy( face$1.vertexNormals[ 2 ] ); } } // restore original normals for ( var f$3 = 0, fl$3 = this.faces.length; f$3 < fl$3; f$3 ++ ) { var face$2 = this.faces[ f$3 ]; face$2.normal = face$2.__originalFaceNormal; face$2.vertexNormals = face$2.__originalVertexNormals; } }, computeBoundingBox: function () { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } this.boundingBox.setFromPoints( this.vertices ); }, computeBoundingSphere: function () { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } this.boundingSphere.setFromPoints( this.vertices ); }, merge: function ( geometry, matrix, materialIndexOffset ) { if ( ! ( geometry && geometry.isGeometry ) ) { console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry ); return; } var normalMatrix; var vertexOffset = this.vertices.length, vertices1 = this.vertices, vertices2 = geometry.vertices, faces1 = this.faces, faces2 = geometry.faces, colors1 = this.colors, colors2 = geometry.colors; if ( materialIndexOffset === undefined ) { materialIndexOffset = 0; } if ( matrix !== undefined ) { normalMatrix = new Matrix3().getNormalMatrix( matrix ); } // vertices for ( var i = 0, il = vertices2.length; i < il; i ++ ) { var vertex = vertices2[ i ]; var vertexCopy = vertex.clone(); if ( matrix !== undefined ) { vertexCopy.applyMatrix4( matrix ); } vertices1.push( vertexCopy ); } // colors for ( var i$1 = 0, il$1 = colors2.length; i$1 < il$1; i$1 ++ ) { colors1.push( colors2[ i$1 ].clone() ); } // faces for ( var i$2 = 0, il$2 = faces2.length; i$2 < il$2; i$2 ++ ) { var face = faces2[ i$2 ]; var normal = (void 0), color = (void 0); var faceVertexNormals = face.vertexNormals, faceVertexColors = face.vertexColors; var faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset ); faceCopy.normal.copy( face.normal ); if ( normalMatrix !== undefined ) { faceCopy.normal.applyMatrix3( normalMatrix ).normalize(); } for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) { normal = faceVertexNormals[ j ].clone(); if ( normalMatrix !== undefined ) { normal.applyMatrix3( normalMatrix ).normalize(); } faceCopy.vertexNormals.push( normal ); } faceCopy.color.copy( face.color ); for ( var j$1 = 0, jl$1 = faceVertexColors.length; j$1 < jl$1; j$1 ++ ) { color = faceVertexColors[ j$1 ]; faceCopy.vertexColors.push( color.clone() ); } faceCopy.materialIndex = face.materialIndex + materialIndexOffset; faces1.push( faceCopy ); } // uvs for ( var i$3 = 0, il$3 = geometry.faceVertexUvs.length; i$3 < il$3; i$3 ++ ) { var faceVertexUvs2 = geometry.faceVertexUvs[ i$3 ]; if ( this.faceVertexUvs[ i$3 ] === undefined ) { this.faceVertexUvs[ i$3 ] = []; } for ( var j$2 = 0, jl$2 = faceVertexUvs2.length; j$2 < jl$2; j$2 ++ ) { var uvs2 = faceVertexUvs2[ j$2 ], uvsCopy = []; for ( var k = 0, kl = uvs2.length; k < kl; k ++ ) { uvsCopy.push( uvs2[ k ].clone() ); } this.faceVertexUvs[ i$3 ].push( uvsCopy ); } } }, mergeMesh: function ( mesh ) { if ( ! ( mesh && mesh.isMesh ) ) { console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh ); return; } if ( mesh.matrixAutoUpdate ) { mesh.updateMatrix(); } this.merge( mesh.geometry, mesh.matrix ); }, /* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */ mergeVertices: function () { var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique) var unique = [], changes = []; var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001 var precision = Math.pow( 10, precisionPoints ); for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { var v = this.vertices[ i ]; var key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision ); if ( verticesMap[ key ] === undefined ) { verticesMap[ key ] = i; unique.push( this.vertices[ i ] ); changes[ i ] = unique.length - 1; } else { //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[ i ] = changes[ verticesMap[ key ] ]; } } // if faces are completely degenerate after merging vertices, we // have to remove them from the geometry. var faceIndicesToRemove = []; for ( var i$1 = 0, il$1 = this.faces.length; i$1 < il$1; i$1 ++ ) { var face = this.faces[ i$1 ]; face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; var indices = [ face.a, face.b, face.c ]; // if any duplicate vertices are found in a Face3 // we have to remove the face as nothing can be saved for ( var n = 0; n < 3; n ++ ) { if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) { faceIndicesToRemove.push( i$1 ); break; } } } for ( var i$2 = faceIndicesToRemove.length - 1; i$2 >= 0; i$2 -- ) { var idx = faceIndicesToRemove[ i$2 ]; this.faces.splice( idx, 1 ); for ( var j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) { this.faceVertexUvs[ j ].splice( idx, 1 ); } } // Use unique set of vertices var diff = this.vertices.length - unique.length; this.vertices = unique; return diff; }, setFromPoints: function ( points ) { this.vertices = []; for ( var i = 0, l = points.length; i < l; i ++ ) { var point = points[ i ]; this.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) ); } return this; }, sortFacesByMaterialIndex: function () { var faces = this.faces; var length = faces.length; // tag faces for ( var i = 0; i < length; i ++ ) { faces[ i ]._id = i; } // sort faces function materialIndexSort( a, b ) { return a.materialIndex - b.materialIndex; } faces.sort( materialIndexSort ); // sort uvs var uvs1 = this.faceVertexUvs[ 0 ]; var uvs2 = this.faceVertexUvs[ 1 ]; var newUvs1, newUvs2; if ( uvs1 && uvs1.length === length ) { newUvs1 = []; } if ( uvs2 && uvs2.length === length ) { newUvs2 = []; } for ( var i$1 = 0; i$1 < length; i$1 ++ ) { var id = faces[ i$1 ]._id; if ( newUvs1 ) { newUvs1.push( uvs1[ id ] ); } if ( newUvs2 ) { newUvs2.push( uvs2[ id ] ); } } if ( newUvs1 ) { this.faceVertexUvs[ 0 ] = newUvs1; } if ( newUvs2 ) { this.faceVertexUvs[ 1 ] = newUvs2; } }, toJSON: function () { var data = { metadata: { version: 4.5, type: 'Geometry', generator: 'Geometry.toJSON' } }; // standard Geometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) { data.name = this.name; } if ( this.parameters !== undefined ) { var parameters = this.parameters; for ( var key in parameters ) { if ( parameters[ key ] !== undefined ) { data[ key ] = parameters[ key ]; } } return data; } var vertices = []; for ( var i = 0; i < this.vertices.length; i ++ ) { var vertex = this.vertices[ i ]; vertices.push( vertex.x, vertex.y, vertex.z ); } var faces = []; var normals = []; var normalsHash = {}; var colors = []; var colorsHash = {}; var uvs = []; var uvsHash = {}; for ( var i$1 = 0; i$1 < this.faces.length; i$1 ++ ) { var face = this.faces[ i$1 ]; var hasMaterial = true; var hasFaceUv = false; // deprecated var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i$1 ] !== undefined; var hasFaceNormal = face.normal.length() > 0; var hasFaceVertexNormal = face.vertexNormals.length > 0; var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1; var hasFaceVertexColor = face.vertexColors.length > 0; var faceType = 0; faceType = setBit( faceType, 0, 0 ); // isQuad faceType = setBit( faceType, 1, hasMaterial ); faceType = setBit( faceType, 2, hasFaceUv ); faceType = setBit( faceType, 3, hasFaceVertexUv ); faceType = setBit( faceType, 4, hasFaceNormal ); faceType = setBit( faceType, 5, hasFaceVertexNormal ); faceType = setBit( faceType, 6, hasFaceColor ); faceType = setBit( faceType, 7, hasFaceVertexColor ); faces.push( faceType ); faces.push( face.a, face.b, face.c ); faces.push( face.materialIndex ); if ( hasFaceVertexUv ) { var faceVertexUvs = this.faceVertexUvs[ 0 ][ i$1 ]; faces.push( getUvIndex( faceVertexUvs[ 0 ] ), getUvIndex( faceVertexUvs[ 1 ] ), getUvIndex( faceVertexUvs[ 2 ] ) ); } if ( hasFaceNormal ) { faces.push( getNormalIndex( face.normal ) ); } if ( hasFaceVertexNormal ) { var vertexNormals = face.vertexNormals; faces.push( getNormalIndex( vertexNormals[ 0 ] ), getNormalIndex( vertexNormals[ 1 ] ), getNormalIndex( vertexNormals[ 2 ] ) ); } if ( hasFaceColor ) { faces.push( getColorIndex( face.color ) ); } if ( hasFaceVertexColor ) { var vertexColors = face.vertexColors; faces.push( getColorIndex( vertexColors[ 0 ] ), getColorIndex( vertexColors[ 1 ] ), getColorIndex( vertexColors[ 2 ] ) ); } } function setBit( value, position, enabled ) { return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) ); } function getNormalIndex( normal ) { var hash = normal.x.toString() + normal.y.toString() + normal.z.toString(); if ( normalsHash[ hash ] !== undefined ) { return normalsHash[ hash ]; } normalsHash[ hash ] = normals.length / 3; normals.push( normal.x, normal.y, normal.z ); return normalsHash[ hash ]; } function getColorIndex( color ) { var hash = color.r.toString() + color.g.toString() + color.b.toString(); if ( colorsHash[ hash ] !== undefined ) { return colorsHash[ hash ]; } colorsHash[ hash ] = colors.length; colors.push( color.getHex() ); return colorsHash[ hash ]; } function getUvIndex( uv ) { var hash = uv.x.toString() + uv.y.toString(); if ( uvsHash[ hash ] !== undefined ) { return uvsHash[ hash ]; } uvsHash[ hash ] = uvs.length / 2; uvs.push( uv.x, uv.y ); return uvsHash[ hash ]; } data.data = {}; data.data.vertices = vertices; data.data.normals = normals; if ( colors.length > 0 ) { data.data.colors = colors; } if ( uvs.length > 0 ) { data.data.uvs = [ uvs ]; } // temporal backward compatibility data.data.faces = faces; return data; }, clone: function () { /* // Handle primitives const parameters = this.parameters; if ( parameters !== undefined ) { const values = []; for ( const key in parameters ) { values.push( parameters[ key ] ); } const geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new Geometry().copy( this ); }, copy: function ( source ) { // reset this.vertices = []; this.colors = []; this.faces = []; this.faceVertexUvs = [[]]; this.morphTargets = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null; // name this.name = source.name; // vertices var vertices = source.vertices; for ( var i = 0, il = vertices.length; i < il; i ++ ) { this.vertices.push( vertices[ i ].clone() ); } // colors var colors = source.colors; for ( var i$1 = 0, il$1 = colors.length; i$1 < il$1; i$1 ++ ) { this.colors.push( colors[ i$1 ].clone() ); } // faces var faces = source.faces; for ( var i$2 = 0, il$2 = faces.length; i$2 < il$2; i$2 ++ ) { this.faces.push( faces[ i$2 ].clone() ); } // face vertex uvs for ( var i$3 = 0, il$3 = source.faceVertexUvs.length; i$3 < il$3; i$3 ++ ) { var faceVertexUvs = source.faceVertexUvs[ i$3 ]; if ( this.faceVertexUvs[ i$3 ] === undefined ) { this.faceVertexUvs[ i$3 ] = []; } for ( var j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) { var uvs = faceVertexUvs[ j ], uvsCopy = []; for ( var k = 0, kl = uvs.length; k < kl; k ++ ) { var uv = uvs[ k ]; uvsCopy.push( uv.clone() ); } this.faceVertexUvs[ i$3 ].push( uvsCopy ); } } // morph targets var morphTargets = source.morphTargets; for ( var i$4 = 0, il$4 = morphTargets.length; i$4 < il$4; i$4 ++ ) { var morphTarget = {}; morphTarget.name = morphTargets[ i$4 ].name; // vertices if ( morphTargets[ i$4 ].vertices !== undefined ) { morphTarget.vertices = []; for ( var j$1 = 0, jl$1 = morphTargets[ i$4 ].vertices.length; j$1 < jl$1; j$1 ++ ) { morphTarget.vertices.push( morphTargets[ i$4 ].vertices[ j$1 ].clone() ); } } // normals if ( morphTargets[ i$4 ].normals !== undefined ) { morphTarget.normals = []; for ( var j$2 = 0, jl$2 = morphTargets[ i$4 ].normals.length; j$2 < jl$2; j$2 ++ ) { morphTarget.normals.push( morphTargets[ i$4 ].normals[ j$2 ].clone() ); } } this.morphTargets.push( morphTarget ); } // morph normals var morphNormals = source.morphNormals; for ( var i$5 = 0, il$5 = morphNormals.length; i$5 < il$5; i$5 ++ ) { var morphNormal = {}; // vertex normals if ( morphNormals[ i$5 ].vertexNormals !== undefined ) { morphNormal.vertexNormals = []; for ( var j$3 = 0, jl$3 = morphNormals[ i$5 ].vertexNormals.length; j$3 < jl$3; j$3 ++ ) { var srcVertexNormal = morphNormals[ i$5 ].vertexNormals[ j$3 ]; var destVertexNormal = {}; destVertexNormal.a = srcVertexNormal.a.clone(); destVertexNormal.b = srcVertexNormal.b.clone(); destVertexNormal.c = srcVertexNormal.c.clone(); morphNormal.vertexNormals.push( destVertexNormal ); } } // face normals if ( morphNormals[ i$5 ].faceNormals !== undefined ) { morphNormal.faceNormals = []; for ( var j$4 = 0, jl$4 = morphNormals[ i$5 ].faceNormals.length; j$4 < jl$4; j$4 ++ ) { morphNormal.faceNormals.push( morphNormals[ i$5 ].faceNormals[ j$4 ].clone() ); } } this.morphNormals.push( morphNormal ); } // skin weights var skinWeights = source.skinWeights; for ( var i$6 = 0, il$6 = skinWeights.length; i$6 < il$6; i$6 ++ ) { this.skinWeights.push( skinWeights[ i$6 ].clone() ); } // skin indices var skinIndices = source.skinIndices; for ( var i$7 = 0, il$7 = skinIndices.length; i$7 < il$7; i$7 ++ ) { this.skinIndices.push( skinIndices[ i$7 ].clone() ); } // line distances var lineDistances = source.lineDistances; for ( var i$8 = 0, il$8 = lineDistances.length; i$8 < il$8; i$8 ++ ) { this.lineDistances.push( lineDistances[ i$8 ] ); } // bounding box var boundingBox = source.boundingBox; if ( boundingBox !== null ) { this.boundingBox = boundingBox.clone(); } // bounding sphere var boundingSphere = source.boundingSphere; if ( boundingSphere !== null ) { this.boundingSphere = boundingSphere.clone(); } // update flags this.elementsNeedUpdate = source.elementsNeedUpdate; this.verticesNeedUpdate = source.verticesNeedUpdate; this.uvsNeedUpdate = source.uvsNeedUpdate; this.normalsNeedUpdate = source.normalsNeedUpdate; this.colorsNeedUpdate = source.colorsNeedUpdate; this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate; this.groupsNeedUpdate = source.groupsNeedUpdate; return this; }, dispose: function () { this.dispatchEvent( { type: 'dispose' } ); } } ); // BoxGeometry function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) { Geometry.call(this); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) ); this.mergeVertices(); } BoxGeometry.prototype = Object.create( Geometry.prototype ); BoxGeometry.prototype.constructor = BoxGeometry; // BoxBufferGeometry function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) { if ( width === void 0 ) width = 1; if ( height === void 0 ) height = 1; if ( depth === void 0 ) depth = 1; if ( widthSegments === void 0 ) widthSegments = 1; if ( heightSegments === void 0 ) heightSegments = 1; if ( depthSegments === void 0 ) depthSegments = 1; BufferGeometry.call(this); this.type = 'BoxBufferGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; var scope = this; // segments widthSegments = Math.floor( widthSegments ); heightSegments = Math.floor( heightSegments ); depthSegments = Math.floor( depthSegments ); // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var numberOfVertices = 0; var groupStart = 0; // build each side of the box geometry buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { var segmentWidth = width / gridX; var segmentHeight = height / gridY; var widthHalf = width / 2; var heightHalf = height / 2; var depthHalf = depth / 2; var gridX1 = gridX + 1; var gridY1 = gridY + 1; var vertexCounter = 0; var groupCount = 0; var vector = new Vector3(); // generate vertices, normals and uvs for ( var iy = 0; iy < gridY1; iy ++ ) { var y = iy * segmentHeight - heightHalf; for ( var ix = 0; ix < gridX1; ix ++ ) { var x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[ u ] = x * udir; vector[ v ] = y * vdir; vector[ w ] = depthHalf; // now apply vector to vertex buffer vertices.push( vector.x, vector.y, vector.z ); // set values to correct vector component vector[ u ] = 0; vector[ v ] = 0; vector[ w ] = depth > 0 ? 1 : - 1; // now apply vector to normal buffer normals.push( vector.x, vector.y, vector.z ); // uvs uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); // counters vertexCounter += 1; } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for ( var iy$1 = 0; iy$1 < gridY; iy$1 ++ ) { for ( var ix$1 = 0; ix$1 < gridX; ix$1 ++ ) { var a = numberOfVertices + ix$1 + gridX1 * iy$1; var b = numberOfVertices + ix$1 + gridX1 * ( iy$1 + 1 ); var c = numberOfVertices + ( ix$1 + 1 ) + gridX1 * ( iy$1 + 1 ); var d = numberOfVertices + ( ix$1 + 1 ) + gridX1 * iy$1; // faces indices.push( a, b, d ); indices.push( b, c, d ); // increase counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, materialIndex ); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } } BoxBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); BoxBufferGeometry.prototype.constructor = BoxBufferGeometry; /** * Uniform Utilities */ function cloneUniforms( src ) { var dst = {}; for ( var u in src ) { dst[ u ] = {}; for ( var p in src[ u ] ) { var property = src[ u ][ p ]; if ( property && ( property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture ) ) { dst[ u ][ p ] = property.clone(); } else if ( Array.isArray( property ) ) { dst[ u ][ p ] = property.slice(); } else { dst[ u ][ p ] = property; } } } return dst; } function mergeUniforms( uniforms ) { var merged = {}; for ( var u = 0; u < uniforms.length; u ++ ) { var tmp = cloneUniforms( uniforms[ u ] ); for ( var p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; } // Legacy var UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; /** * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, * * fragmentShader: , * vertexShader: , * * wireframe: , * wireframeLinewidth: , * * lights: , * * skinning: , * morphTargets: , * morphNormals: * } */ function ShaderMaterial( parameters ) { Material.call( this ); this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.vertexShader = default_vertex; this.fragmentShader = default_fragment; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes this.skinning = false; // set to use skinning attribute streams this.morphTargets = false; // set to use morph targets this.morphNormals = false; // set to use morph normals this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv2': [ 0, 0 ] }; this.index0AttributeName = undefined; this.uniformsNeedUpdate = false; this.glslVersion = null; if ( parameters !== undefined ) { if ( parameters.attributes !== undefined ) { console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' ); } this.setValues( parameters ); } } ShaderMaterial.prototype = Object.create( Material.prototype ); ShaderMaterial.prototype.constructor = ShaderMaterial; ShaderMaterial.prototype.isShaderMaterial = true; ShaderMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = cloneUniforms( source.uniforms ); this.defines = Object.assign( {}, source.defines ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.lights = source.lights; this.clipping = source.clipping; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.extensions = Object.assign( {}, source.extensions ); this.glslVersion = source.glslVersion; return this; }; ShaderMaterial.prototype.toJSON = function ( meta ) { var data = Material.prototype.toJSON.call( this, meta ); data.glslVersion = this.glslVersion; data.uniforms = {}; for ( var name in this.uniforms ) { var uniform = this.uniforms[ name ]; var value = uniform.value; if ( value && value.isTexture ) { data.uniforms[ name ] = { type: 't', value: value.toJSON( meta ).uuid }; } else if ( value && value.isColor ) { data.uniforms[ name ] = { type: 'c', value: value.getHex() }; } else if ( value && value.isVector2 ) { data.uniforms[ name ] = { type: 'v2', value: value.toArray() }; } else if ( value && value.isVector3 ) { data.uniforms[ name ] = { type: 'v3', value: value.toArray() }; } else if ( value && value.isVector4 ) { data.uniforms[ name ] = { type: 'v4', value: value.toArray() }; } else if ( value && value.isMatrix3 ) { data.uniforms[ name ] = { type: 'm3', value: value.toArray() }; } else if ( value && value.isMatrix4 ) { data.uniforms[ name ] = { type: 'm4', value: value.toArray() }; } else { data.uniforms[ name ] = { value: value }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far } } if ( Object.keys( this.defines ).length > 0 ) { data.defines = this.defines; } data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; var extensions = {}; for ( var key in this.extensions ) { if ( this.extensions[ key ] === true ) { extensions[ key ] = true; } } if ( Object.keys( extensions ).length > 0 ) { data.extensions = extensions; } return data; }; function Camera() { Object3D.call( this ); this.type = 'Camera'; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); this.projectionMatrixInverse = new Matrix4(); } Camera.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Camera, isCamera: true, copy: function ( source, recursive ) { Object3D.prototype.copy.call( this, source, recursive ); this.matrixWorldInverse.copy( source.matrixWorldInverse ); this.projectionMatrix.copy( source.projectionMatrix ); this.projectionMatrixInverse.copy( source.projectionMatrixInverse ); return this; }, getWorldDirection: function ( target ) { if ( target === undefined ) { console.warn( 'THREE.Camera: .getWorldDirection() target is now required' ); target = new Vector3(); } this.updateMatrixWorld( true ); var e = this.matrixWorld.elements; return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize(); }, updateMatrixWorld: function ( force ) { Object3D.prototype.updateMatrixWorld.call( this, force ); this.matrixWorldInverse.getInverse( this.matrixWorld ); }, updateWorldMatrix: function ( updateParents, updateChildren ) { Object3D.prototype.updateWorldMatrix.call( this, updateParents, updateChildren ); this.matrixWorldInverse.getInverse( this.matrixWorld ); }, clone: function () { return new this.constructor().copy( this ); } } ); function PerspectiveCamera( fov, aspect, near, far ) { Camera.call( this ); this.type = 'PerspectiveCamera'; this.fov = fov !== undefined ? fov : 50; this.zoom = 1; this.near = near !== undefined ? near : 0.1; this.far = far !== undefined ? far : 2000; this.focus = 10; this.aspect = aspect !== undefined ? aspect : 1; this.view = null; this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge) this.updateProjectionMatrix(); } PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), { constructor: PerspectiveCamera, isPerspectiveCamera: true, copy: function ( source, recursive ) { Camera.prototype.copy.call( this, source, recursive ); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign( {}, source.view ); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; }, /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength: function ( focalLength ) { // see http://www.bobatkins.com/photography/technical/field_of_view.html var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = MathUtils.RAD2DEG * 2 * Math.atan( vExtentSlope ); this.updateProjectionMatrix(); }, /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength: function () { var vExtentSlope = Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ); return 0.5 * this.getFilmHeight() / vExtentSlope; }, getEffectiveFOV: function () { return MathUtils.RAD2DEG * 2 * Math.atan( Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom ); }, getFilmWidth: function () { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min( this.aspect, 1 ); }, getFilmHeight: function () { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max( this.aspect, 1 ); }, /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * const w = 1920; * const h = 1080; * const fullWidth = w * 3; * const fullHeight = h * 2; * * --A-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) { this.aspect = fullWidth / fullHeight; if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); }, clearViewOffset: function () { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); }, updateProjectionMatrix: function () { var near = this.near; var top = near * Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom; var height = 2 * top; var width = this.aspect * height; var left = - 0.5 * width; var view = this.view; if ( this.view !== null && this.view.enabled ) { var fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } var skew = this.filmOffset; if ( skew !== 0 ) { left += near * skew / this.getFilmWidth(); } this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far ); this.projectionMatrixInverse.getInverse( this.projectionMatrix ); }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if ( this.view !== null ) { data.object.view = Object.assign( {}, this.view ); } data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } ); var fov = 90, aspect = 1; function CubeCamera( near, far, renderTarget ) { Object3D.call( this ); this.type = 'CubeCamera'; if ( renderTarget.isWebGLCubeRenderTarget !== true ) { console.error( 'THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.' ); return; } this.renderTarget = renderTarget; var cameraPX = new PerspectiveCamera( fov, aspect, near, far ); cameraPX.layers = this.layers; cameraPX.up.set( 0, - 1, 0 ); cameraPX.lookAt( new Vector3( 1, 0, 0 ) ); this.add( cameraPX ); var cameraNX = new PerspectiveCamera( fov, aspect, near, far ); cameraNX.layers = this.layers; cameraNX.up.set( 0, - 1, 0 ); cameraNX.lookAt( new Vector3( - 1, 0, 0 ) ); this.add( cameraNX ); var cameraPY = new PerspectiveCamera( fov, aspect, near, far ); cameraPY.layers = this.layers; cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( new Vector3( 0, 1, 0 ) ); this.add( cameraPY ); var cameraNY = new PerspectiveCamera( fov, aspect, near, far ); cameraNY.layers = this.layers; cameraNY.up.set( 0, 0, - 1 ); cameraNY.lookAt( new Vector3( 0, - 1, 0 ) ); this.add( cameraNY ); var cameraPZ = new PerspectiveCamera( fov, aspect, near, far ); cameraPZ.layers = this.layers; cameraPZ.up.set( 0, - 1, 0 ); cameraPZ.lookAt( new Vector3( 0, 0, 1 ) ); this.add( cameraPZ ); var cameraNZ = new PerspectiveCamera( fov, aspect, near, far ); cameraNZ.layers = this.layers; cameraNZ.up.set( 0, - 1, 0 ); cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) ); this.add( cameraNZ ); this.update = function ( renderer, scene ) { if ( this.parent === null ) { this.updateMatrixWorld(); } var currentXrEnabled = renderer.xr.enabled; var currentRenderTarget = renderer.getRenderTarget(); renderer.xr.enabled = false; var generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderer.setRenderTarget( renderTarget, 0 ); renderer.render( scene, cameraPX ); renderer.setRenderTarget( renderTarget, 1 ); renderer.render( scene, cameraNX ); renderer.setRenderTarget( renderTarget, 2 ); renderer.render( scene, cameraPY ); renderer.setRenderTarget( renderTarget, 3 ); renderer.render( scene, cameraNY ); renderer.setRenderTarget( renderTarget, 4 ); renderer.render( scene, cameraPZ ); renderTarget.texture.generateMipmaps = generateMipmaps; renderer.setRenderTarget( renderTarget, 5 ); renderer.render( scene, cameraNZ ); renderer.setRenderTarget( currentRenderTarget ); renderer.xr.enabled = currentXrEnabled; }; this.clear = function ( renderer, color, depth, stencil ) { var currentRenderTarget = renderer.getRenderTarget(); for ( var i = 0; i < 6; i ++ ) { renderer.setRenderTarget( renderTarget, i ); renderer.clear( color, depth, stencil ); } renderer.setRenderTarget( currentRenderTarget ); }; } CubeCamera.prototype = Object.create( Object3D.prototype ); CubeCamera.prototype.constructor = CubeCamera; function WebGLCubeRenderTarget( size, options, dummy ) { if ( Number.isInteger( options ) ) { console.warn( 'THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )' ); options = dummy; } WebGLRenderTarget.call( this, size, size, options ); this.texture.isWebGLCubeRenderTargetTexture = true; // HACK Why is texture not a CubeTexture? } WebGLCubeRenderTarget.prototype = Object.create( WebGLRenderTarget.prototype ); WebGLCubeRenderTarget.prototype.constructor = WebGLCubeRenderTarget; WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true; WebGLCubeRenderTarget.prototype.fromEquirectangularTexture = function ( renderer, texture ) { this.texture.type = texture.type; this.texture.format = RGBAFormat; // see #18859 this.texture.encoding = texture.encoding; this.texture.generateMipmaps = texture.generateMipmaps; this.texture.minFilter = texture.minFilter; this.texture.magFilter = texture.magFilter; var shader = { uniforms: { tEquirect: { value: null }, }, vertexShader: /* glsl */"\n\n\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\tvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\n\t\t\t\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n\n\t\t\t}\n\n\t\t\tvoid main() {\n\n\t\t\t\tvWorldDirection = transformDirection( position, modelMatrix );\n\n\t\t\t\t#include \n\t\t\t\t#include \n\n\t\t\t}\n\t\t", fragmentShader: /* glsl */"\n\n\t\t\tuniform sampler2D tEquirect;\n\n\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t#include \n\n\t\t\tvoid main() {\n\n\t\t\t\tvec3 direction = normalize( vWorldDirection );\n\n\t\t\t\tvec2 sampleUV = equirectUv( direction );\n\n\t\t\t\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\n\t\t\t}\n\t\t" }; var geometry = new BoxBufferGeometry( 5, 5, 5 ); var material = new ShaderMaterial( { name: 'CubemapFromEquirect', uniforms: cloneUniforms( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, side: BackSide, blending: NoBlending } ); material.uniforms.tEquirect.value = texture; var mesh = new Mesh( geometry, material ); var currentMinFilter = texture.minFilter; // Avoid blurred poles if ( texture.minFilter === LinearMipmapLinearFilter ) { texture.minFilter = LinearFilter; } var camera = new CubeCamera( 1, 10, this ); camera.update( renderer, mesh ); texture.minFilter = currentMinFilter; mesh.geometry.dispose(); mesh.material.dispose(); return this; }; function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.image = { data: data || null, width: width || 1, height: height || 1 }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; this.needsUpdate = true; } DataTexture.prototype = Object.create( Texture.prototype ); DataTexture.prototype.constructor = DataTexture; DataTexture.prototype.isDataTexture = true; var _sphere$1 = new Sphere(); var _vector$5 = new Vector3(); var Frustum = function Frustum( p0, p1, p2, p3, p4, p5 ) { this.planes = [ ( p0 !== undefined ) ? p0 : new Plane(), ( p1 !== undefined ) ? p1 : new Plane(), ( p2 !== undefined ) ? p2 : new Plane(), ( p3 !== undefined ) ? p3 : new Plane(), ( p4 !== undefined ) ? p4 : new Plane(), ( p5 !== undefined ) ? p5 : new Plane() ]; }; Frustum.prototype.set = function set ( p0, p1, p2, p3, p4, p5 ) { var planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; }; Frustum.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Frustum.prototype.copy = function copy ( frustum ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; }; Frustum.prototype.setFromProjectionMatrix = function setFromProjectionMatrix ( m ) { var planes = this.planes; var me = m.elements; var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); return this; }; Frustum.prototype.intersectsObject = function intersectsObject ( object ) { var geometry = object.geometry; if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } _sphere$1.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld ); return this.intersectsSphere( _sphere$1 ); }; Frustum.prototype.intersectsSprite = function intersectsSprite ( sprite ) { _sphere$1.center.set( 0, 0, 0 ); _sphere$1.radius = 0.7071067811865476; _sphere$1.applyMatrix4( sprite.matrixWorld ); return this.intersectsSphere( _sphere$1 ); }; Frustum.prototype.intersectsSphere = function intersectsSphere ( sphere ) { var planes = this.planes; var center = sphere.center; var negRadius = - sphere.radius; for ( var i = 0; i < 6; i ++ ) { var distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; }; Frustum.prototype.intersectsBox = function intersectsBox ( box ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { var plane = planes[ i ]; // corner at max distance _vector$5.x = plane.normal.x > 0 ? box.max.x : box.min.x; _vector$5.y = plane.normal.y > 0 ? box.max.y : box.min.y; _vector$5.z = plane.normal.z > 0 ? box.max.z : box.min.z; if ( plane.distanceToPoint( _vector$5 ) < 0 ) { return false; } } return true; }; Frustum.prototype.containsPoint = function containsPoint ( point ) { var planes = this.planes; for ( var i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; }; function WebGLAnimation() { var context = null; var isAnimating = false; var animationLoop = null; var requestId = null; function onAnimationFrame( time, frame ) { animationLoop( time, frame ); requestId = context.requestAnimationFrame( onAnimationFrame ); } return { start: function () { if ( isAnimating === true ) { return; } if ( animationLoop === null ) { return; } requestId = context.requestAnimationFrame( onAnimationFrame ); isAnimating = true; }, stop: function () { context.cancelAnimationFrame( requestId ); isAnimating = false; }, setAnimationLoop: function ( callback ) { animationLoop = callback; }, setContext: function ( value ) { context = value; } }; } function WebGLAttributes( gl, capabilities ) { var isWebGL2 = capabilities.isWebGL2; var buffers = new WeakMap(); function createBuffer( attribute, bufferType ) { var array = attribute.array; var usage = attribute.usage; var buffer = gl.createBuffer(); gl.bindBuffer( bufferType, buffer ); gl.bufferData( bufferType, array, usage ); attribute.onUploadCallback(); var type = 5126; if ( array instanceof Float32Array ) { type = 5126; } else if ( array instanceof Float64Array ) { console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' ); } else if ( array instanceof Uint16Array ) { type = 5123; } else if ( array instanceof Int16Array ) { type = 5122; } else if ( array instanceof Uint32Array ) { type = 5125; } else if ( array instanceof Int32Array ) { type = 5124; } else if ( array instanceof Int8Array ) { type = 5120; } else if ( array instanceof Uint8Array ) { type = 5121; } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version }; } function updateBuffer( buffer, attribute, bufferType ) { var array = attribute.array; var updateRange = attribute.updateRange; gl.bindBuffer( bufferType, buffer ); if ( updateRange.count === - 1 ) { // Not using update ranges gl.bufferSubData( bufferType, 0, array ); } else { if ( isWebGL2 ) { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count ); } else { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) ); } updateRange.count = - 1; // reset range } } // function get( attribute ) { if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; } return buffers.get( attribute ); } function remove( attribute ) { if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; } var data = buffers.get( attribute ); if ( data ) { gl.deleteBuffer( data.buffer ); buffers.delete( attribute ); } } function update( attribute, bufferType ) { if ( attribute.isGLBufferAttribute ) { var cached = buffers.get( attribute ); if ( ! cached || cached.version < attribute.version ) { buffers.set( attribute, { buffer: attribute.buffer, type: attribute.type, bytesPerElement: attribute.elementSize, version: attribute.version } ); } return; } if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; } var data = buffers.get( attribute ); if ( data === undefined ) { buffers.set( attribute, createBuffer( attribute, bufferType ) ); } else if ( data.version < attribute.version ) { updateBuffer( data.buffer, attribute, bufferType ); data.version = attribute.version; } } return { get: get, remove: remove, update: update }; } // PlaneGeometry function PlaneGeometry( width, height, widthSegments, heightSegments ) { Geometry.call(this); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) ); this.mergeVertices(); } PlaneGeometry.prototype = Object.create( Geometry.prototype ); PlaneGeometry.prototype.constructor = PlaneGeometry; // PlaneBufferGeometry function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) { BufferGeometry.call(this); this.type = 'PlaneBufferGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; width = width || 1; height = height || 1; var width_half = width / 2; var height_half = height / 2; var gridX = Math.floor( widthSegments ) || 1; var gridY = Math.floor( heightSegments ) || 1; var gridX1 = gridX + 1; var gridY1 = gridY + 1; var segment_width = width / gridX; var segment_height = height / gridY; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // generate vertices, normals and uvs for ( var iy = 0; iy < gridY1; iy ++ ) { var y = iy * segment_height - height_half; for ( var ix = 0; ix < gridX1; ix ++ ) { var x = ix * segment_width - width_half; vertices.push( x, - y, 0 ); normals.push( 0, 0, 1 ); uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); } } // indices for ( var iy$1 = 0; iy$1 < gridY; iy$1 ++ ) { for ( var ix$1 = 0; ix$1 < gridX; ix$1 ++ ) { var a = ix$1 + gridX1 * iy$1; var b = ix$1 + gridX1 * ( iy$1 + 1 ); var c = ( ix$1 + 1 ) + gridX1 * ( iy$1 + 1 ); var d = ( ix$1 + 1 ) + gridX1 * iy$1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry; var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif"; var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif"; var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; var begin_vertex = "vec3 transformed = vec3( position );"; var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif"; var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif"; var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif"; var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif"; var color_pars_vertex = "#if defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_vertex = "#if defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor.xyz *= color.xyz;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif"; var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif"; var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif"; var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}"; var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif"; var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif"; var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif"; var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif"; var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif"; var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = - mvPosition.z;\n#endif"; var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif"; var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}"; var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif"; var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif"; var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif"; var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)"; var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)"; var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif"; var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat specularRoughness;\n\tvec3 specularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif"; var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif"; var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif"; var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif"; var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif"; var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\t\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\t\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif"; var normal_fragment_begin = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t\tbitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;"; var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\n\t\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n\t\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n\t\tvec3 N = normalize( surf_norm );\n\t\tmat3 tsn = mat3( S, T, N );\n\t\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif"; var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif"; var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN );\n\t#endif\n#endif"; var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif"; var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif"; var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif"; var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif"; var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif"; var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}"; var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif"; var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif"; var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; var transmissionmap_fragment = "#ifdef USE_TRANSMISSIONMAP\n\ttotalTransmission *= texture2D( transmissionMap, vUv ).r;\n#endif"; var transmissionmap_pars_fragment = "#ifdef USE_TRANSMISSIONMAP\n\tuniform sampler2D transmissionMap;\n#endif"; var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif"; var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif"; var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif"; var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif"; var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif"; var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif"; var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; var cube_frag = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}"; var cube_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}"; var depth_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}"; var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}"; var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}"; var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; var equirect_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}"; var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshbasic_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_ENVMAP\n\t#include \n\t#include \n\t#include \n\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}"; var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define REFLECTIVITY\n\t#define CLEARCOAT\n\t#define TRANSMISSION\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef TRANSMISSION\n\tuniform float transmission;\n#endif\n#ifdef REFLECTIVITY\n\tuniform float reflectivity;\n#endif\n#ifdef CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheen;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#ifdef TRANSMISSION\n\t\tfloat totalTransmission = transmission;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#ifdef TRANSMISSION\n\t\tdiffuseColor.a *= saturate( 1. - totalTransmission + linearToRelativeLuminance( reflectedLight.directSpecular + reflectedLight.indirectSpecular ) );\n\t#endif\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}"; var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}"; var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var points_vert = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}"; var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}"; var shadow_vert = "#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n}"; var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}"; var ShaderChunk = { alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, encodings_fragment: encodings_fragment, encodings_pars_fragment: encodings_pars_fragment, envmap_fragment: envmap_fragment, envmap_common_pars_fragment: envmap_common_pars_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_physical_pars_fragment: envmap_physical_pars_fragment, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_vertex: lights_lambert_vertex, lights_pars_begin: lights_pars_begin, lights_toon_fragment: lights_toon_fragment, lights_toon_pars_fragment: lights_toon_pars_fragment, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_fragment_begin: lights_fragment_begin, lights_fragment_maps: lights_fragment_maps, lights_fragment_end: lights_fragment_end, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_fragment_begin: normal_fragment_begin, normal_fragment_maps: normal_fragment_maps, normalmap_pars_fragment: normalmap_pars_fragment, clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, clearcoat_pars_fragment: clearcoat_pars_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, transmissionmap_fragment: transmissionmap_fragment, transmissionmap_pars_fragment: transmissionmap_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, uv2_pars_fragment: uv2_pars_fragment, uv2_pars_vertex: uv2_pars_vertex, uv2_vertex: uv2_vertex, worldpos_vertex: worldpos_vertex, background_frag: background_frag, background_vert: background_vert, cube_frag: cube_frag, cube_vert: cube_vert, depth_frag: depth_frag, depth_vert: depth_vert, distanceRGBA_frag: distanceRGBA_frag, distanceRGBA_vert: distanceRGBA_vert, equirect_frag: equirect_frag, equirect_vert: equirect_vert, linedashed_frag: linedashed_frag, linedashed_vert: linedashed_vert, meshbasic_frag: meshbasic_frag, meshbasic_vert: meshbasic_vert, meshlambert_frag: meshlambert_frag, meshlambert_vert: meshlambert_vert, meshmatcap_frag: meshmatcap_frag, meshmatcap_vert: meshmatcap_vert, meshtoon_frag: meshtoon_frag, meshtoon_vert: meshtoon_vert, meshphong_frag: meshphong_frag, meshphong_vert: meshphong_vert, meshphysical_frag: meshphysical_frag, meshphysical_vert: meshphysical_vert, normal_frag: normal_frag, normal_vert: normal_vert, points_frag: points_frag, points_vert: points_vert, shadow_frag: shadow_frag, shadow_vert: shadow_vert, sprite_frag: sprite_frag, sprite_vert: sprite_vert }; /** * Uniforms library for shared webgl shaders */ var UniformsLib = { common: { diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 }, map: { value: null }, uvTransform: { value: new Matrix3() }, uv2Transform: { value: new Matrix3() }, alphaMap: { value: null }, }, specularmap: { specularMap: { value: null }, }, envmap: { envMap: { value: null }, flipEnvMap: { value: - 1 }, reflectivity: { value: 1.0 }, refractionRatio: { value: 0.98 }, maxMipLevel: { value: 0 } }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 } }, emissivemap: { emissiveMap: { value: null } }, bumpmap: { bumpMap: { value: null }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalScale: { value: new Vector2( 1, 1 ) } }, displacementmap: { displacementMap: { value: null }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, roughnessmap: { roughnessMap: { value: null } }, metalnessmap: { metalnessMap: { value: null } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: new Color( 0xffffff ) } }, lights: { ambientLightColor: { value: [] }, lightProbe: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {} } }, directionalLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {} } }, spotLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotShadowMap: { value: [] }, spotShadowMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {} } }, pointLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } }, ltc_1: { value: null }, ltc_2: { value: null } }, points: { diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, alphaMap: { value: null }, uvTransform: { value: new Matrix3() } }, sprite: { diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 }, center: { value: new Vector2( 0.5, 0.5 ) }, rotation: { value: 0.0 }, map: { value: null }, alphaMap: { value: null }, uvTransform: { value: new Matrix3() } } }; var ShaderLib = { basic: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog ] ), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) }, specular: { value: new Color( 0x111111 ) }, shininess: { value: 30 } } ] ), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) }, roughness: { value: 1.0 }, metalness: { value: 0.0 }, envMapIntensity: { value: 1 } // temporary } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, toon: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshtoon_vert, fragmentShader: ShaderChunk.meshtoon_frag }, matcap: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { matcap: { value: null } } ] ), vertexShader: ShaderChunk.meshmatcap_vert, fragmentShader: ShaderChunk.meshmatcap_frag }, points: { uniforms: mergeUniforms( [ UniformsLib.points, UniformsLib.fog ] ), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ] ), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap ] ), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.normal_vert, fragmentShader: ShaderChunk.normal_frag }, sprite: { uniforms: mergeUniforms( [ UniformsLib.sprite, UniformsLib.fog ] ), vertexShader: ShaderChunk.sprite_vert, fragmentShader: ShaderChunk.sprite_frag }, background: { uniforms: { uvTransform: { value: new Matrix3() }, t2D: { value: null }, }, vertexShader: ShaderChunk.background_vert, fragmentShader: ShaderChunk.background_frag }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ cube: { uniforms: mergeUniforms( [ UniformsLib.envmap, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, equirect: { uniforms: { tEquirect: { value: null }, }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1000 } } ] ), vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag }, shadow: { uniforms: mergeUniforms( [ UniformsLib.lights, UniformsLib.fog, { color: { value: new Color( 0x00000 ) }, opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag } }; ShaderLib.physical = { uniforms: mergeUniforms( [ ShaderLib.standard.uniforms, { clearcoat: { value: 0 }, clearcoatMap: { value: null }, clearcoatRoughness: { value: 0 }, clearcoatRoughnessMap: { value: null }, clearcoatNormalScale: { value: new Vector2( 1, 1 ) }, clearcoatNormalMap: { value: null }, sheen: { value: new Color( 0x000000 ) }, transmission: { value: 0 }, transmissionMap: { value: null }, } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }; function WebGLBackground( renderer, cubemaps, state, objects, premultipliedAlpha ) { var clearColor = new Color( 0x000000 ); var clearAlpha = 0; var planeMesh; var boxMesh; var currentBackground = null; var currentBackgroundVersion = 0; var currentTonemapping = null; function render( renderList, scene, camera, forceClear ) { var background = scene.isScene === true ? scene.background : null; if ( background && background.isTexture ) { background = cubemaps.get( background ); } // Ignore background in AR // TODO: Reconsider this. var xr = renderer.xr; var session = xr.getSession && xr.getSession(); if ( session && session.environmentBlendMode === 'additive' ) { background = null; } if ( background === null ) { setClear( clearColor, clearAlpha ); } else if ( background && background.isColor ) { setClear( background, 1 ); forceClear = true; } if ( renderer.autoClear || forceClear ) { renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); } if ( background && ( background.isCubeTexture || background.isWebGLCubeRenderTarget || background.isWebGLCubeRenderTargetTexture || background.mapping === CubeUVReflectionMapping ) ) { if ( boxMesh === undefined ) { boxMesh = new Mesh( new BoxBufferGeometry( 1, 1, 1 ), new ShaderMaterial( { name: 'BackgroundCubeMaterial', uniforms: cloneUniforms( ShaderLib.cube.uniforms ), vertexShader: ShaderLib.cube.vertexShader, fragmentShader: ShaderLib.cube.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false } ) ); boxMesh.geometry.deleteAttribute( 'normal' ); boxMesh.geometry.deleteAttribute( 'uv' ); boxMesh.onBeforeRender = function ( renderer, scene, camera ) { this.matrixWorld.copyPosition( camera.matrixWorld ); }; // enable code injection for non-built-in material Object.defineProperty( boxMesh.material, 'envMap', { get: function () { return this.uniforms.envMap.value; } } ); objects.update( boxMesh ); } if ( background.isWebGLCubeRenderTarget ) { // TODO Deprecate background = background.texture; } boxMesh.material.uniforms.envMap.value = background; boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture ? - 1 : 1; if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { boxMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } // push to the pre-sorted opaque render list renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null ); } else if ( background && background.isTexture ) { if ( planeMesh === undefined ) { planeMesh = new Mesh( new PlaneBufferGeometry( 2, 2 ), new ShaderMaterial( { name: 'BackgroundMaterial', uniforms: cloneUniforms( ShaderLib.background.uniforms ), vertexShader: ShaderLib.background.vertexShader, fragmentShader: ShaderLib.background.fragmentShader, side: FrontSide, depthTest: false, depthWrite: false, fog: false } ) ); planeMesh.geometry.deleteAttribute( 'normal' ); // enable code injection for non-built-in material Object.defineProperty( planeMesh.material, 'map', { get: function () { return this.uniforms.t2D.value; } } ); objects.update( planeMesh ); } planeMesh.material.uniforms.t2D.value = background; if ( background.matrixAutoUpdate === true ) { background.updateMatrix(); } planeMesh.material.uniforms.uvTransform.value.copy( background.matrix ); if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { planeMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } // push to the pre-sorted opaque render list renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null ); } } function setClear( color, alpha ) { state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha ); } return { getClearColor: function () { return clearColor; }, setClearColor: function ( color, alpha ) { clearColor.set( color ); clearAlpha = alpha !== undefined ? alpha : 1; setClear( clearColor, clearAlpha ); }, getClearAlpha: function () { return clearAlpha; }, setClearAlpha: function ( alpha ) { clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, render: render }; } function WebGLBindingStates( gl, extensions, attributes, capabilities ) { var maxVertexAttributes = gl.getParameter( 34921 ); var extension = capabilities.isWebGL2 ? null : extensions.get( 'OES_vertex_array_object' ); var vaoAvailable = capabilities.isWebGL2 || extension !== null; var bindingStates = {}; var defaultState = createBindingState( null ); var currentState = defaultState; function setup( object, material, program, geometry, index ) { var updateBuffers = false; if ( vaoAvailable ) { var state = getBindingState( geometry, program, material ); if ( currentState !== state ) { currentState = state; bindVertexArrayObject( currentState.object ); } updateBuffers = needsUpdate( geometry, index ); if ( updateBuffers ) { saveCache( geometry, index ); } } else { var wireframe = ( material.wireframe === true ); if ( currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe ) { currentState.geometry = geometry.id; currentState.program = program.id; currentState.wireframe = wireframe; updateBuffers = true; } } if ( object.isInstancedMesh === true ) { updateBuffers = true; } if ( index !== null ) { attributes.update( index, 34963 ); } if ( updateBuffers ) { setupVertexAttributes( object, material, program, geometry ); if ( index !== null ) { gl.bindBuffer( 34963, attributes.get( index ).buffer ); } } } function createVertexArrayObject() { if ( capabilities.isWebGL2 ) { return gl.createVertexArray(); } return extension.createVertexArrayOES(); } function bindVertexArrayObject( vao ) { if ( capabilities.isWebGL2 ) { return gl.bindVertexArray( vao ); } return extension.bindVertexArrayOES( vao ); } function deleteVertexArrayObject( vao ) { if ( capabilities.isWebGL2 ) { return gl.deleteVertexArray( vao ); } return extension.deleteVertexArrayOES( vao ); } function getBindingState( geometry, program, material ) { var wireframe = ( material.wireframe === true ); var programMap = bindingStates[ geometry.id ]; if ( programMap === undefined ) { programMap = {}; bindingStates[ geometry.id ] = programMap; } var stateMap = programMap[ program.id ]; if ( stateMap === undefined ) { stateMap = {}; programMap[ program.id ] = stateMap; } var state = stateMap[ wireframe ]; if ( state === undefined ) { state = createBindingState( createVertexArrayObject() ); stateMap[ wireframe ] = state; } return state; } function createBindingState( vao ) { var newAttributes = []; var enabledAttributes = []; var attributeDivisors = []; for ( var i = 0; i < maxVertexAttributes; i ++ ) { newAttributes[ i ] = 0; enabledAttributes[ i ] = 0; attributeDivisors[ i ] = 0; } return { // for backward compatibility on non-VAO support browser geometry: null, program: null, wireframe: false, newAttributes: newAttributes, enabledAttributes: enabledAttributes, attributeDivisors: attributeDivisors, object: vao, attributes: {}, index: null }; } function needsUpdate( geometry, index ) { var cachedAttributes = currentState.attributes; var geometryAttributes = geometry.attributes; if ( Object.keys( cachedAttributes ).length !== Object.keys( geometryAttributes ).length ) { return true; } for ( var key in geometryAttributes ) { var cachedAttribute = cachedAttributes[ key ]; var geometryAttribute = geometryAttributes[ key ]; if ( cachedAttribute === undefined ) { return true; } if ( cachedAttribute.attribute !== geometryAttribute ) { return true; } if ( cachedAttribute.data !== geometryAttribute.data ) { return true; } } if ( currentState.index !== index ) { return true; } return false; } function saveCache( geometry, index ) { var cache = {}; var attributes = geometry.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var data = {}; data.attribute = attribute; if ( attribute.data ) { data.data = attribute.data; } cache[ key ] = data; } currentState.attributes = cache; currentState.index = index; } function initAttributes() { var newAttributes = currentState.newAttributes; for ( var i = 0, il = newAttributes.length; i < il; i ++ ) { newAttributes[ i ] = 0; } } function enableAttribute( attribute ) { enableAttributeAndDivisor( attribute, 0 ); } function enableAttributeAndDivisor( attribute, meshPerAttribute ) { var newAttributes = currentState.newAttributes; var enabledAttributes = currentState.enabledAttributes; var attributeDivisors = currentState.attributeDivisors; newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { var extension = capabilities.isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' ); extension[ capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute; } } function disableUnusedAttributes() { var newAttributes = currentState.newAttributes; var enabledAttributes = currentState.enabledAttributes; for ( var i = 0, il = enabledAttributes.length; i < il; i ++ ) { if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } } function vertexAttribPointer( index, size, type, normalized, stride, offset ) { if ( capabilities.isWebGL2 === true && ( type === 5124 || type === 5125 ) ) { gl.vertexAttribIPointer( index, size, type, stride, offset ); } else { gl.vertexAttribPointer( index, size, type, normalized, stride, offset ); } } function setupVertexAttributes( object, material, program, geometry ) { if ( capabilities.isWebGL2 === false && ( object.isInstancedMesh || geometry.isInstancedBufferGeometry ) ) { if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) { return; } } initAttributes(); var geometryAttributes = geometry.attributes; var programAttributes = program.getAttributes(); var materialDefaultAttributeValues = material.defaultAttributeValues; for ( var name in programAttributes ) { var programAttribute = programAttributes[ name ]; if ( programAttribute >= 0 ) { var geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute !== undefined ) { var normalized = geometryAttribute.normalized; var size = geometryAttribute.itemSize; var attribute = attributes.get( geometryAttribute ); // TODO Attribute may not be available on context restore if ( attribute === undefined ) { continue; } var buffer = attribute.buffer; var type = attribute.type; var bytesPerElement = attribute.bytesPerElement; if ( geometryAttribute.isInterleavedBufferAttribute ) { var data = geometryAttribute.data; var stride = data.stride; var offset = geometryAttribute.offset; if ( data && data.isInstancedInterleavedBuffer ) { enableAttributeAndDivisor( programAttribute, data.meshPerAttribute ); if ( geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = data.meshPerAttribute * data.count; } } else { enableAttribute( programAttribute ); } gl.bindBuffer( 34962, buffer ); vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement ); } else { if ( geometryAttribute.isInstancedBufferAttribute ) { enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute ); if ( geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { enableAttribute( programAttribute ); } gl.bindBuffer( 34962, buffer ); vertexAttribPointer( programAttribute, size, type, normalized, 0, 0 ); } } else if ( name === 'instanceMatrix' ) { var attribute$1 = attributes.get( object.instanceMatrix ); // TODO Attribute may not be available on context restore if ( attribute$1 === undefined ) { continue; } var buffer$1 = attribute$1.buffer; var type$1 = attribute$1.type; enableAttributeAndDivisor( programAttribute + 0, 1 ); enableAttributeAndDivisor( programAttribute + 1, 1 ); enableAttributeAndDivisor( programAttribute + 2, 1 ); enableAttributeAndDivisor( programAttribute + 3, 1 ); gl.bindBuffer( 34962, buffer$1 ); gl.vertexAttribPointer( programAttribute + 0, 4, type$1, false, 64, 0 ); gl.vertexAttribPointer( programAttribute + 1, 4, type$1, false, 64, 16 ); gl.vertexAttribPointer( programAttribute + 2, 4, type$1, false, 64, 32 ); gl.vertexAttribPointer( programAttribute + 3, 4, type$1, false, 64, 48 ); } else if ( name === 'instanceColor' ) { var attribute$2 = attributes.get( object.instanceColor ); // TODO Attribute may not be available on context restore if ( attribute$2 === undefined ) { continue; } var buffer$2 = attribute$2.buffer; var type$2 = attribute$2.type; enableAttributeAndDivisor( programAttribute, 1 ); gl.bindBuffer( 34962, buffer$2 ); gl.vertexAttribPointer( programAttribute, 3, type$2, false, 12, 0 ); } else if ( materialDefaultAttributeValues !== undefined ) { var value = materialDefaultAttributeValues[ name ]; if ( value !== undefined ) { switch ( value.length ) { case 2: gl.vertexAttrib2fv( programAttribute, value ); break; case 3: gl.vertexAttrib3fv( programAttribute, value ); break; case 4: gl.vertexAttrib4fv( programAttribute, value ); break; default: gl.vertexAttrib1fv( programAttribute, value ); } } } } } disableUnusedAttributes(); } function dispose() { reset(); for ( var geometryId in bindingStates ) { var programMap = bindingStates[ geometryId ]; for ( var programId in programMap ) { var stateMap = programMap[ programId ]; for ( var wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometryId ]; } } function releaseStatesOfGeometry( geometry ) { if ( bindingStates[ geometry.id ] === undefined ) { return; } var programMap = bindingStates[ geometry.id ]; for ( var programId in programMap ) { var stateMap = programMap[ programId ]; for ( var wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometry.id ]; } function releaseStatesOfProgram( program ) { for ( var geometryId in bindingStates ) { var programMap = bindingStates[ geometryId ]; if ( programMap[ program.id ] === undefined ) { continue; } var stateMap = programMap[ program.id ]; for ( var wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ program.id ]; } } function reset() { resetDefaultState(); if ( currentState === defaultState ) { return; } currentState = defaultState; bindVertexArrayObject( currentState.object ); } // for backward-compatilibity function resetDefaultState() { defaultState.geometry = null; defaultState.program = null; defaultState.wireframe = false; } return { setup: setup, reset: reset, resetDefaultState: resetDefaultState, dispose: dispose, releaseStatesOfGeometry: releaseStatesOfGeometry, releaseStatesOfProgram: releaseStatesOfProgram, initAttributes: initAttributes, enableAttribute: enableAttribute, disableUnusedAttributes: disableUnusedAttributes }; } function WebGLBufferRenderer( gl, extensions, info, capabilities ) { var isWebGL2 = capabilities.isWebGL2; var mode; function setMode( value ) { mode = value; } function render( start, count ) { gl.drawArrays( mode, start, count ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) { return; } var extension, methodName; if ( isWebGL2 ) { extension = gl; methodName = 'drawArraysInstanced'; } else { extension = extensions.get( 'ANGLE_instanced_arrays' ); methodName = 'drawArraysInstancedANGLE'; if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } extension[ methodName ]( mode, start, count, primcount ); info.update( count, mode, primcount ); } // this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; } function WebGLCapabilities( gl, extensions, parameters ) { var maxAnisotropy; function getMaxAnisotropy() { if ( maxAnisotropy !== undefined ) { return maxAnisotropy; } var extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension !== null ) { maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); } else { maxAnisotropy = 0; } return maxAnisotropy; } function getMaxPrecision( precision ) { if ( precision === 'highp' ) { if ( gl.getShaderPrecisionFormat( 35633, 36338 ).precision > 0 && gl.getShaderPrecisionFormat( 35632, 36338 ).precision > 0 ) { return 'highp'; } precision = 'mediump'; } if ( precision === 'mediump' ) { if ( gl.getShaderPrecisionFormat( 35633, 36337 ).precision > 0 && gl.getShaderPrecisionFormat( 35632, 36337 ).precision > 0 ) { return 'mediump'; } } return 'lowp'; } /* eslint-disable no-undef */ var isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext ) || ( typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext ); /* eslint-enable no-undef */ var precision = parameters.precision !== undefined ? parameters.precision : 'highp'; var maxPrecision = getMaxPrecision( precision ); if ( maxPrecision !== precision ) { console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); precision = maxPrecision; } var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; var maxTextures = gl.getParameter( 34930 ); var maxVertexTextures = gl.getParameter( 35660 ); var maxTextureSize = gl.getParameter( 3379 ); var maxCubemapSize = gl.getParameter( 34076 ); var maxAttributes = gl.getParameter( 34921 ); var maxVertexUniforms = gl.getParameter( 36347 ); var maxVaryings = gl.getParameter( 36348 ); var maxFragmentUniforms = gl.getParameter( 36349 ); var vertexTextures = maxVertexTextures > 0; var floatFragmentTextures = isWebGL2 || !! extensions.get( 'OES_texture_float' ); var floatVertexTextures = vertexTextures && floatFragmentTextures; var maxSamples = isWebGL2 ? gl.getParameter( 36183 ) : 0; return { isWebGL2: isWebGL2, getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures, maxSamples: maxSamples }; } function WebGLClipping( properties ) { var scope = this; var globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false; var plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false }; this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0; this.init = function ( planes, enableLocalClipping, camera ) { var enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; globalState = projectPlanes( planes, camera, 0 ); numGlobalPlanes = planes.length; return enabled; }; this.beginShadows = function () { renderingShadows = true; projectPlanes( null ); }; this.endShadows = function () { renderingShadows = false; resetGlobalState(); }; this.setState = function ( material, camera, useCache ) { var planes = material.clippingPlanes, clipIntersection = material.clipIntersection, clipShadows = material.clipShadows; var materialProperties = properties.get( material ); if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) { // there's no local clipping if ( renderingShadows ) { // there's no global clipping projectPlanes( null ); } else { resetGlobalState(); } } else { var nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4; var dstArray = materialProperties.clippingState || null; uniform.value = dstArray; // ensure unique state dstArray = projectPlanes( planes, camera, lGlobal, useCache ); for ( var i = 0; i !== lGlobal; ++ i ) { dstArray[ i ] = globalState[ i ]; } materialProperties.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal; } }; function resetGlobalState() { if ( uniform.value !== globalState ) { uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0; } scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0; } function projectPlanes( planes, camera, dstOffset, skipTransform ) { var nPlanes = planes !== null ? planes.length : 0; var dstArray = null; if ( nPlanes !== 0 ) { dstArray = uniform.value; if ( skipTransform !== true || dstArray === null ) { var flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse; viewNormalMatrix.getNormalMatrix( viewMatrix ); if ( dstArray === null || dstArray.length < flatSize ) { dstArray = new Float32Array( flatSize ); } for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) { plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix ); plane.normal.toArray( dstArray, i4 ); dstArray[ i4 + 3 ] = plane.constant; } } uniform.value = dstArray; uniform.needsUpdate = true; } scope.numPlanes = nPlanes; scope.numIntersection = 0; return dstArray; } } function WebGLCubeMaps( renderer ) { var cubemaps = new WeakMap(); function mapTextureMapping( texture, mapping ) { if ( mapping === EquirectangularReflectionMapping ) { texture.mapping = CubeReflectionMapping; } else if ( mapping === EquirectangularRefractionMapping ) { texture.mapping = CubeRefractionMapping; } return texture; } function get( texture ) { if ( texture && texture.isTexture ) { var mapping = texture.mapping; if ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) { if ( cubemaps.has( texture ) ) { var cubemap = cubemaps.get( texture ).texture; return mapTextureMapping( cubemap, texture.mapping ); } else { var image = texture.image; if ( image && image.height > 0 ) { var currentRenderList = renderer.getRenderList(); var currentRenderTarget = renderer.getRenderTarget(); var currentRenderState = renderer.getRenderState(); var renderTarget = new WebGLCubeRenderTarget( image.height / 2 ); renderTarget.fromEquirectangularTexture( renderer, texture ); cubemaps.set( texture, renderTarget ); renderer.setRenderTarget( currentRenderTarget ); renderer.setRenderList( currentRenderList ); renderer.setRenderState( currentRenderState ); return mapTextureMapping( renderTarget.texture, texture.mapping ); } else { // image not yet ready. try the conversion next frame return null; } } } } return texture; } function dispose() { cubemaps = new WeakMap(); } return { get: get, dispose: dispose }; } function WebGLExtensions( gl ) { var extensions = {}; return { has: function ( name ) { if ( extensions[ name ] !== undefined ) { return extensions[ name ] !== null; } var extension; switch ( name ) { case 'WEBGL_depth_texture': extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); break; case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break; default: extension = gl.getExtension( name ); } extensions[ name ] = extension; return extension !== null; }, get: function ( name ) { if ( ! this.has( name ) ) { console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); } return extensions[ name ]; } }; } function WebGLGeometries( gl, attributes, info, bindingStates ) { var geometries = new WeakMap(); var wireframeAttributes = new WeakMap(); function onGeometryDispose( event ) { var geometry = event.target; var buffergeometry = geometries.get( geometry ); if ( buffergeometry.index !== null ) { attributes.remove( buffergeometry.index ); } for ( var name in buffergeometry.attributes ) { attributes.remove( buffergeometry.attributes[ name ] ); } geometry.removeEventListener( 'dispose', onGeometryDispose ); geometries.delete( geometry ); var attribute = wireframeAttributes.get( buffergeometry ); if ( attribute ) { attributes.remove( attribute ); wireframeAttributes.delete( buffergeometry ); } bindingStates.releaseStatesOfGeometry( geometry ); if ( geometry.isInstancedBufferGeometry === true ) { delete geometry._maxInstanceCount; } // info.memory.geometries --; } function get( object, geometry ) { var buffergeometry = geometries.get( geometry ); if ( buffergeometry ) { return buffergeometry; } geometry.addEventListener( 'dispose', onGeometryDispose ); if ( geometry.isBufferGeometry ) { buffergeometry = geometry; } else if ( geometry.isGeometry ) { if ( geometry._bufferGeometry === undefined ) { geometry._bufferGeometry = new BufferGeometry().setFromObject( object ); } buffergeometry = geometry._bufferGeometry; } geometries.set( geometry, buffergeometry ); info.memory.geometries ++; return buffergeometry; } function update( geometry ) { var geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates. for ( var name in geometryAttributes ) { attributes.update( geometryAttributes[ name ], 34962 ); } // morph targets var morphAttributes = geometry.morphAttributes; for ( var name$1 in morphAttributes ) { var array = morphAttributes[ name$1 ]; for ( var i = 0, l = array.length; i < l; i ++ ) { attributes.update( array[ i ], 34962 ); } } } function updateWireframeAttribute( geometry ) { var indices = []; var geometryIndex = geometry.index; var geometryPosition = geometry.attributes.position; var version = 0; if ( geometryIndex !== null ) { var array = geometryIndex.array; version = geometryIndex.version; for ( var i = 0, l = array.length; i < l; i += 3 ) { var a = array[ i + 0 ]; var b = array[ i + 1 ]; var c = array[ i + 2 ]; indices.push( a, b, b, c, c, a ); } } else { var array$1 = geometryPosition.array; version = geometryPosition.version; for ( var i$1 = 0, l$1 = ( array$1.length / 3 ) - 1; i$1 < l$1; i$1 += 3 ) { var a$1 = i$1 + 0; var b$1 = i$1 + 1; var c$1 = i$1 + 2; indices.push( a$1, b$1, b$1, c$1, c$1, a$1 ); } } var attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates // var previousAttribute = wireframeAttributes.get( geometry ); if ( previousAttribute ) { attributes.remove( previousAttribute ); } // wireframeAttributes.set( geometry, attribute ); } function getWireframeAttribute( geometry ) { var currentAttribute = wireframeAttributes.get( geometry ); if ( currentAttribute ) { var geometryIndex = geometry.index; if ( geometryIndex !== null ) { // if the attribute is obsolete, create a new one if ( currentAttribute.version < geometryIndex.version ) { updateWireframeAttribute( geometry ); } } } else { updateWireframeAttribute( geometry ); } return wireframeAttributes.get( geometry ); } return { get: get, update: update, getWireframeAttribute: getWireframeAttribute }; } function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) { var isWebGL2 = capabilities.isWebGL2; var mode; function setMode( value ) { mode = value; } var type, bytesPerElement; function setIndex( value ) { type = value.type; bytesPerElement = value.bytesPerElement; } function render( start, count ) { gl.drawElements( mode, count, type, start * bytesPerElement ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) { return; } var extension, methodName; if ( isWebGL2 ) { extension = gl; methodName = 'drawElementsInstanced'; } else { extension = extensions.get( 'ANGLE_instanced_arrays' ); methodName = 'drawElementsInstancedANGLE'; if ( extension === null ) { console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } extension[ methodName ]( mode, count, type, start * bytesPerElement, primcount ); info.update( count, mode, primcount ); } // this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; } function WebGLInfo( gl ) { var memory = { geometries: 0, textures: 0 }; var render = { frame: 0, calls: 0, triangles: 0, points: 0, lines: 0 }; function update( count, mode, instanceCount ) { render.calls ++; switch ( mode ) { case 4: render.triangles += instanceCount * ( count / 3 ); break; case 1: render.lines += instanceCount * ( count / 2 ); break; case 3: render.lines += instanceCount * ( count - 1 ); break; case 2: render.lines += instanceCount * count; break; case 0: render.points += instanceCount * count; break; default: console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode ); break; } } function reset() { render.frame ++; render.calls = 0; render.triangles = 0; render.points = 0; render.lines = 0; } return { memory: memory, render: render, programs: null, autoReset: true, reset: reset, update: update }; } function numericalSort( a, b ) { return a[ 0 ] - b[ 0 ]; } function absNumericalSort( a, b ) { return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] ); } function WebGLMorphtargets( gl ) { var influencesList = {}; var morphInfluences = new Float32Array( 8 ); var workInfluences = []; for ( var i = 0; i < 8; i ++ ) { workInfluences[ i ] = [ i, 0 ]; } function update( object, geometry, material, program ) { var objectInfluences = object.morphTargetInfluences; // When object doesn't have morph target influences defined, we treat it as a 0-length array // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences var length = objectInfluences === undefined ? 0 : objectInfluences.length; var influences = influencesList[ geometry.id ]; if ( influences === undefined ) { // initialise list influences = []; for ( var i = 0; i < length; i ++ ) { influences[ i ] = [ i, 0 ]; } influencesList[ geometry.id ] = influences; } // Collect influences for ( var i$1 = 0; i$1 < length; i$1 ++ ) { var influence = influences[ i$1 ]; influence[ 0 ] = i$1; influence[ 1 ] = objectInfluences[ i$1 ]; } influences.sort( absNumericalSort ); for ( var i$2 = 0; i$2 < 8; i$2 ++ ) { if ( i$2 < length && influences[ i$2 ][ 1 ] ) { workInfluences[ i$2 ][ 0 ] = influences[ i$2 ][ 0 ]; workInfluences[ i$2 ][ 1 ] = influences[ i$2 ][ 1 ]; } else { workInfluences[ i$2 ][ 0 ] = Number.MAX_SAFE_INTEGER; workInfluences[ i$2 ][ 1 ] = 0; } } workInfluences.sort( numericalSort ); var morphTargets = material.morphTargets && geometry.morphAttributes.position; var morphNormals = material.morphNormals && geometry.morphAttributes.normal; var morphInfluencesSum = 0; for ( var i$3 = 0; i$3 < 8; i$3 ++ ) { var influence$1 = workInfluences[ i$3 ]; var index = influence$1[ 0 ]; var value = influence$1[ 1 ]; if ( index !== Number.MAX_SAFE_INTEGER && value ) { if ( morphTargets && geometry.getAttribute( 'morphTarget' + i$3 ) !== morphTargets[ index ] ) { geometry.setAttribute( 'morphTarget' + i$3, morphTargets[ index ] ); } if ( morphNormals && geometry.getAttribute( 'morphNormal' + i$3 ) !== morphNormals[ index ] ) { geometry.setAttribute( 'morphNormal' + i$3, morphNormals[ index ] ); } morphInfluences[ i$3 ] = value; morphInfluencesSum += value; } else { if ( morphTargets && geometry.getAttribute( 'morphTarget' + i$3 ) !== undefined ) { geometry.deleteAttribute( 'morphTarget' + i$3 ); } if ( morphNormals && geometry.getAttribute( 'morphNormal' + i$3 ) !== undefined ) { geometry.deleteAttribute( 'morphNormal' + i$3 ); } morphInfluences[ i$3 ] = 0; } } // GLSL shader uses formula baseinfluence * base + sum(target * influence) // This allows us to switch between absolute morphs and relative morphs without changing shader code // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence) var morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence ); program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences ); } return { update: update }; } function WebGLObjects( gl, geometries, attributes, info ) { var updateMap = new WeakMap(); function update( object ) { var frame = info.render.frame; var geometry = object.geometry; var buffergeometry = geometries.get( object, geometry ); // Update once per frame if ( updateMap.get( buffergeometry ) !== frame ) { if ( geometry.isGeometry ) { buffergeometry.updateFromObject( object ); } geometries.update( buffergeometry ); updateMap.set( buffergeometry, frame ); } if ( object.isInstancedMesh ) { attributes.update( object.instanceMatrix, 34962 ); if ( object.instanceColor !== null ) { attributes.update( object.instanceColor, 34962 ); } } return buffergeometry; } function dispose() { updateMap = new WeakMap(); } return { update: update, dispose: dispose }; } function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping; format = format !== undefined ? format : RGBFormat; Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.flipY = false; } CubeTexture.prototype = Object.create( Texture.prototype ); CubeTexture.prototype.constructor = CubeTexture; CubeTexture.prototype.isCubeTexture = true; Object.defineProperty( CubeTexture.prototype, 'images', { get: function () { return this.image; }, set: function ( value ) { this.image = value; } } ); function DataTexture2DArray( data, width, height, depth ) { Texture.call( this, null ); this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.needsUpdate = true; } DataTexture2DArray.prototype = Object.create( Texture.prototype ); DataTexture2DArray.prototype.constructor = DataTexture2DArray; DataTexture2DArray.prototype.isDataTexture2DArray = true; function DataTexture3D( data, width, height, depth ) { // We're going to add .setXXX() methods for setting properties later. // Users can still set in DataTexture3D directly. // // const texture = new THREE.DataTexture3D( data, width, height, depth ); // texture.anisotropy = 16; // // See #14839 Texture.call( this, null ); this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.needsUpdate = true; } DataTexture3D.prototype = Object.create( Texture.prototype ); DataTexture3D.prototype.constructor = DataTexture3D; DataTexture3D.prototype.isDataTexture3D = true; /** * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [textures] ) * * uploads a uniform value(s) * the 'textures' parameter is needed for sampler uniforms * * * Static methods of the top-level container (textures factorizations): * * .upload( gl, seq, values, textures ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (textures factorizations): * * .setValue( gl, name, value, textures ) * * sets uniform with name 'name' to 'value' * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ var emptyTexture = new Texture(); var emptyTexture2dArray = new DataTexture2DArray(); var emptyTexture3d = new DataTexture3D(); var emptyCubeTexture = new CubeTexture(); // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) var arrayCacheF32 = []; var arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms var mat4array = new Float32Array( 16 ); var mat3array = new Float32Array( 9 ); var mat2array = new Float32Array( 4 ); // Flattening for arrays of vectors and matrices function flatten( array, nBlocks, blockSize ) { var firstElem = array[ 0 ]; if ( firstElem <= 0 || firstElem > 0 ) { return array; } // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 var n = nBlocks * blockSize; var r = arrayCacheF32[ n ]; if ( r === undefined ) { r = new Float32Array( n ); arrayCacheF32[ n ] = r; } if ( nBlocks !== 0 ) { firstElem.toArray( r, 0 ); for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) { offset += blockSize; array[ i ].toArray( r, offset ); } } return r; } function arraysEqual( a, b ) { if ( a.length !== b.length ) { return false; } for ( var i = 0, l = a.length; i < l; i ++ ) { if ( a[ i ] !== b[ i ] ) { return false; } } return true; } function copyArray( a, b ) { for ( var i = 0, l = b.length; i < l; i ++ ) { a[ i ] = b[ i ]; } } // Texture unit allocation function allocTexUnits( textures, n ) { var r = arrayCacheI32[ n ]; if ( r === undefined ) { r = new Int32Array( n ); arrayCacheI32[ n ] = r; } for ( var i = 0; i !== n; ++ i ) { r[ i ] = textures.allocateTextureUnit(); } return r; } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValueV1f( gl, v ) { var cache = this.cache; if ( cache[ 0 ] === v ) { return; } gl.uniform1f( this.addr, v ); cache[ 0 ] = v; } // Single float vector (from flat array or THREE.VectorN) function setValueV2f( gl, v ) { var cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { gl.uniform2f( this.addr, v.x, v.y ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; } } else { if ( arraysEqual( cache, v ) ) { return; } gl.uniform2fv( this.addr, v ); copyArray( cache, v ); } } function setValueV3f( gl, v ) { var cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { gl.uniform3f( this.addr, v.x, v.y, v.z ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; } } else if ( v.r !== undefined ) { if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) { gl.uniform3f( this.addr, v.r, v.g, v.b ); cache[ 0 ] = v.r; cache[ 1 ] = v.g; cache[ 2 ] = v.b; } } else { if ( arraysEqual( cache, v ) ) { return; } gl.uniform3fv( this.addr, v ); copyArray( cache, v ); } } function setValueV4f( gl, v ) { var cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { gl.uniform4f( this.addr, v.x, v.y, v.z, v.w ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w; } } else { if ( arraysEqual( cache, v ) ) { return; } gl.uniform4fv( this.addr, v ); copyArray( cache, v ); } } // Single matrix (from flat array or MatrixN) function setValueM2( gl, v ) { var cache = this.cache; var elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) { return; } gl.uniformMatrix2fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) { return; } mat2array.set( elements ); gl.uniformMatrix2fv( this.addr, false, mat2array ); copyArray( cache, elements ); } } function setValueM3( gl, v ) { var cache = this.cache; var elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) { return; } gl.uniformMatrix3fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) { return; } mat3array.set( elements ); gl.uniformMatrix3fv( this.addr, false, mat3array ); copyArray( cache, elements ); } } function setValueM4( gl, v ) { var cache = this.cache; var elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) { return; } gl.uniformMatrix4fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) { return; } mat4array.set( elements ); gl.uniformMatrix4fv( this.addr, false, mat4array ); copyArray( cache, elements ); } } // Single texture (2D / Cube) function setValueT1( gl, v, textures ) { var cache = this.cache; var unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.safeSetTexture2D( v || emptyTexture, unit ); } function setValueT2DArray1( gl, v, textures ) { var cache = this.cache; var unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture2DArray( v || emptyTexture2dArray, unit ); } function setValueT3D1( gl, v, textures ) { var cache = this.cache; var unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture3D( v || emptyTexture3d, unit ); } function setValueT6( gl, v, textures ) { var cache = this.cache; var unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.safeSetTextureCube( v || emptyCubeTexture, unit ); } // Integer / Boolean vectors or arrays thereof (always flat arrays) function setValueV1i( gl, v ) { var cache = this.cache; if ( cache[ 0 ] === v ) { return; } gl.uniform1i( this.addr, v ); cache[ 0 ] = v; } function setValueV2i( gl, v ) { var cache = this.cache; if ( arraysEqual( cache, v ) ) { return; } gl.uniform2iv( this.addr, v ); copyArray( cache, v ); } function setValueV3i( gl, v ) { var cache = this.cache; if ( arraysEqual( cache, v ) ) { return; } gl.uniform3iv( this.addr, v ); copyArray( cache, v ); } function setValueV4i( gl, v ) { var cache = this.cache; if ( arraysEqual( cache, v ) ) { return; } gl.uniform4iv( this.addr, v ); copyArray( cache, v ); } // uint function setValueV1ui( gl, v ) { var cache = this.cache; if ( cache[ 0 ] === v ) { return; } gl.uniform1ui( this.addr, v ); cache[ 0 ] = v; } // Helper to pick the right setter for the singular case function getSingularSetter( type ) { switch ( type ) { case 0x1406: return setValueV1f; // FLOAT case 0x8b50: return setValueV2f; // _VEC2 case 0x8b51: return setValueV3f; // _VEC3 case 0x8b52: return setValueV4f; // _VEC4 case 0x8b5a: return setValueM2; // _MAT2 case 0x8b5b: return setValueM3; // _MAT3 case 0x8b5c: return setValueM4; // _MAT4 case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4 case 0x1405: return setValueV1ui; // UINT case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1; case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3D1; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6; case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArray1; } } // Array of scalars function setValueV1fArray( gl, v ) { gl.uniform1fv( this.addr, v ); } // Integer / Boolean vectors or arrays thereof (always flat arrays) function setValueV1iArray( gl, v ) { gl.uniform1iv( this.addr, v ); } function setValueV2iArray( gl, v ) { gl.uniform2iv( this.addr, v ); } function setValueV3iArray( gl, v ) { gl.uniform3iv( this.addr, v ); } function setValueV4iArray( gl, v ) { gl.uniform4iv( this.addr, v ); } // Array of vectors (flat or from THREE classes) function setValueV2fArray( gl, v ) { var data = flatten( v, this.size, 2 ); gl.uniform2fv( this.addr, data ); } function setValueV3fArray( gl, v ) { var data = flatten( v, this.size, 3 ); gl.uniform3fv( this.addr, data ); } function setValueV4fArray( gl, v ) { var data = flatten( v, this.size, 4 ); gl.uniform4fv( this.addr, data ); } // Array of matrices (flat or from THREE clases) function setValueM2Array( gl, v ) { var data = flatten( v, this.size, 4 ); gl.uniformMatrix2fv( this.addr, false, data ); } function setValueM3Array( gl, v ) { var data = flatten( v, this.size, 9 ); gl.uniformMatrix3fv( this.addr, false, data ); } function setValueM4Array( gl, v ) { var data = flatten( v, this.size, 16 ); gl.uniformMatrix4fv( this.addr, false, data ); } // Array of textures (2D / Cube) function setValueT1Array( gl, v, textures ) { var n = v.length; var units = allocTexUnits( textures, n ); gl.uniform1iv( this.addr, units ); for ( var i = 0; i !== n; ++ i ) { textures.safeSetTexture2D( v[ i ] || emptyTexture, units[ i ] ); } } function setValueT6Array( gl, v, textures ) { var n = v.length; var units = allocTexUnits( textures, n ); gl.uniform1iv( this.addr, units ); for ( var i = 0; i !== n; ++ i ) { textures.safeSetTextureCube( v[ i ] || emptyCubeTexture, units[ i ] ); } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter( type ) { switch ( type ) { case 0x1406: return setValueV1fArray; // FLOAT case 0x8b50: return setValueV2fArray; // _VEC2 case 0x8b51: return setValueV3fArray; // _VEC3 case 0x8b52: return setValueV4fArray; // _VEC4 case 0x8b5a: return setValueM2Array; // _MAT2 case 0x8b5b: return setValueM3Array; // _MAT3 case 0x8b5c: return setValueM4Array; // _MAT4 case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1Array; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6Array; } } // --- Uniform Classes --- function SingleUniform( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.setValue = getSingularSetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } function PureArrayUniform( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.size = activeInfo.size; this.setValue = getPureArraySetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } PureArrayUniform.prototype.updateCache = function ( data ) { var cache = this.cache; if ( data instanceof Float32Array && cache.length !== data.length ) { this.cache = new Float32Array( data.length ); } copyArray( cache, data ); }; function StructuredUniform( id ) { this.id = id; this.seq = []; this.map = {}; } StructuredUniform.prototype.setValue = function ( gl, value, textures ) { var seq = this.seq; for ( var i = 0, n = seq.length; i !== n; ++ i ) { var u = seq[ i ]; u.setValue( gl, value[ u.id ], textures ); } }; // --- Top-level --- // Parser - builds up the property tree from the path strings var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g; // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform( container, uniformObject ) { container.seq.push( uniformObject ); container.map[ uniformObject.id ] = uniformObject; } function parseUniform( activeInfo, addr, container ) { var path = activeInfo.name, pathLength = path.length; // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0; while ( true ) { var match = RePathPart.exec( path ), matchEnd = RePathPart.lastIndex; var id = match[ 1 ]; var idIsIndex = match[ 2 ] === ']', subscript = match[ 3 ]; if ( idIsIndex ) { id = id | 0; } // convert to integer if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) { // bare name or "pure" bottom-level array "[0]" suffix addUniform( container, subscript === undefined ? new SingleUniform( id, activeInfo, addr ) : new PureArrayUniform( id, activeInfo, addr ) ); break; } else { // step into inner node / create it in case it doesn't exist var map = container.map; var next = map[ id ]; if ( next === undefined ) { next = new StructuredUniform( id ); addUniform( container, next ); } container = next; } } } // Root Container function WebGLUniforms( gl, program ) { this.seq = []; this.map = {}; var n = gl.getProgramParameter( program, 35718 ); for ( var i = 0; i < n; ++ i ) { var info = gl.getActiveUniform( program, i ), addr = gl.getUniformLocation( program, info.name ); parseUniform( info, addr, this ); } } WebGLUniforms.prototype.setValue = function ( gl, name, value, textures ) { var u = this.map[ name ]; if ( u !== undefined ) { u.setValue( gl, value, textures ); } }; WebGLUniforms.prototype.setOptional = function ( gl, object, name ) { var v = object[ name ]; if ( v !== undefined ) { this.setValue( gl, name, v ); } }; // Static interface WebGLUniforms.upload = function ( gl, seq, values, textures ) { for ( var i = 0, n = seq.length; i !== n; ++ i ) { var u = seq[ i ], v = values[ u.id ]; if ( v.needsUpdate !== false ) { // note: always updating when .needsUpdate is undefined u.setValue( gl, v.value, textures ); } } }; WebGLUniforms.seqWithValue = function ( seq, values ) { var r = []; for ( var i = 0, n = seq.length; i !== n; ++ i ) { var u = seq[ i ]; if ( u.id in values ) { r.push( u ); } } return r; }; function WebGLShader( gl, type, string ) { var shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); return shader; } var programIdCount = 0; function addLineNumbers( string ) { var lines = string.split( '\n' ); for ( var i = 0; i < lines.length; i ++ ) { lines[ i ] = ( i + 1 ) + ': ' + lines[ i ]; } return lines.join( '\n' ); } function getEncodingComponents( encoding ) { switch ( encoding ) { case LinearEncoding: return [ 'Linear', '( value )' ]; case sRGBEncoding: return [ 'sRGB', '( value )' ]; case RGBEEncoding: return [ 'RGBE', '( value )' ]; case RGBM7Encoding: return [ 'RGBM', '( value, 7.0 )' ]; case RGBM16Encoding: return [ 'RGBM', '( value, 16.0 )' ]; case RGBDEncoding: return [ 'RGBD', '( value, 256.0 )' ]; case GammaEncoding: return [ 'Gamma', '( value, float( GAMMA_FACTOR ) )' ]; case LogLuvEncoding: return [ 'LogLuv', '( value )' ]; default: console.warn( 'THREE.WebGLProgram: Unsupported encoding:', encoding ); return [ 'Linear', '( value )' ]; } } function getShaderErrors( gl, shader, type ) { var status = gl.getShaderParameter( shader, 35713 ); var log = gl.getShaderInfoLog( shader ).trim(); if ( status && log === '' ) { return ''; } // --enable-privileged-webgl-extension // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); var source = gl.getShaderSource( shader ); return 'THREE.WebGLShader: gl.getShaderInfoLog() ' + type + '\n' + log + addLineNumbers( source ); } function getTexelDecodingFunction( functionName, encoding ) { var components = getEncodingComponents( encoding ); return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[ 0 ] + 'ToLinear' + components[ 1 ] + '; }'; } function getTexelEncodingFunction( functionName, encoding ) { var components = getEncodingComponents( encoding ); return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }'; } function getToneMappingFunction( functionName, toneMapping ) { var toneMappingName; switch ( toneMapping ) { case LinearToneMapping: toneMappingName = 'Linear'; break; case ReinhardToneMapping: toneMappingName = 'Reinhard'; break; case CineonToneMapping: toneMappingName = 'OptimizedCineon'; break; case ACESFilmicToneMapping: toneMappingName = 'ACESFilmic'; break; case CustomToneMapping: toneMappingName = 'Custom'; break; default: console.warn( 'THREE.WebGLProgram: Unsupported toneMapping:', toneMapping ); toneMappingName = 'Linear'; } return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; } function generateExtensions( parameters ) { var chunks = [ ( parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ) ? '#extension GL_OES_standard_derivatives : enable' : '', ( parameters.extensionFragDepth || parameters.logarithmicDepthBuffer ) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', ( parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ) ? '#extension GL_EXT_draw_buffers : require' : '', ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : '' ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateDefines( defines ) { var chunks = []; for ( var name in defines ) { var value = defines[ name ]; if ( value === false ) { continue; } chunks.push( '#define ' + name + ' ' + value ); } return chunks.join( '\n' ); } function fetchAttributeLocations( gl, program ) { var attributes = {}; var n = gl.getProgramParameter( program, 35721 ); for ( var i = 0; i < n; i ++ ) { var info = gl.getActiveAttrib( program, i ); var name = info.name; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); attributes[ name ] = gl.getAttribLocation( program, name ); } return attributes; } function filterEmptyLine( string ) { return string !== ''; } function replaceLightNums( string, parameters ) { return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ) .replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows ) .replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows ) .replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows ); } function replaceClippingPlaneNums( string, parameters ) { return string .replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes ) .replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) ); } // Resolve Includes var includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; function resolveIncludes( string ) { return string.replace( includePattern, includeReplacer ); } function includeReplacer( match, include ) { var string = ShaderChunk[ include ]; if ( string === undefined ) { throw new Error( 'Can not resolve #include <' + include + '>' ); } return resolveIncludes( string ); } // Unroll Loops var deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; var unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; function unrollLoops( string ) { return string .replace( unrollLoopPattern, loopReplacer ) .replace( deprecatedUnrollLoopPattern, deprecatedLoopReplacer ); } function deprecatedLoopReplacer( match, start, end, snippet ) { console.warn( 'WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.' ); return loopReplacer( match, start, end, snippet ); } function loopReplacer( match, start, end, snippet ) { var string = ''; for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) { string += snippet .replace( /\[\s*i\s*\]/g, '[ ' + i + ' ]' ) .replace( /UNROLLED_LOOP_INDEX/g, i ); } return string; } // function generatePrecision( parameters ) { var precisionstring = "precision " + parameters.precision + " float;\nprecision " + parameters.precision + " int;"; if ( parameters.precision === "highp" ) { precisionstring += "\n#define HIGH_PRECISION"; } else if ( parameters.precision === "mediump" ) { precisionstring += "\n#define MEDIUM_PRECISION"; } else if ( parameters.precision === "lowp" ) { precisionstring += "\n#define LOW_PRECISION"; } return precisionstring; } function generateShadowMapTypeDefine( parameters ) { var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if ( parameters.shadowMapType === PCFShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if ( parameters.shadowMapType === PCFSoftShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } else if ( parameters.shadowMapType === VSMShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; } return shadowMapTypeDefine; } function generateEnvMapTypeDefine( parameters ) { var envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case CubeUVReflectionMapping: case CubeUVRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break; } } return envMapTypeDefine; } function generateEnvMapModeDefine( parameters ) { var envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeRefractionMapping: case CubeUVRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } } return envMapModeDefine; } function generateEnvMapBlendingDefine( parameters ) { var envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; if ( parameters.envMap ) { switch ( parameters.combine ) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } return envMapBlendingDefine; } function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) { var gl = renderer.getContext(); var defines = parameters.defines; var vertexShader = parameters.vertexShader; var fragmentShader = parameters.fragmentShader; var shadowMapTypeDefine = generateShadowMapTypeDefine( parameters ); var envMapTypeDefine = generateEnvMapTypeDefine( parameters ); var envMapModeDefine = generateEnvMapModeDefine( parameters ); var envMapBlendingDefine = generateEnvMapBlendingDefine( parameters ); var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0; var customExtensions = parameters.isWebGL2 ? '' : generateExtensions( parameters ); var customDefines = generateDefines( defines ); var program = gl.createProgram(); var prefixVertex, prefixFragment; var versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + "\n" : ''; if ( parameters.isRawShaderMaterial ) { prefixVertex = [ customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixVertex.length > 0 ) { prefixVertex += '\n'; } prefixFragment = [ customExtensions, customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixFragment.length > 0 ) { prefixFragment += '\n'; } } else { prefixVertex = [ generatePrecision( parameters ), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '', ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#ifdef USE_COLOR', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, generatePrecision( parameters ), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + ( parameters.alphaTest % 1 ? '' : '.0' ) : '', // add '.0' if integer '#define GAMMA_FACTOR ' + gammaFactorDefine, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '', ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', ( ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ) ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', ( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '', ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '', parameters.dithering ? '#define DITHERING' : '', ShaderChunk[ 'encodings_pars_fragment' ], // this code is required here because it is used by the various encoding/decoding function defined below parameters.map ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '', parameters.matcap ? getTexelDecodingFunction( 'matcapTexelToLinear', parameters.matcapEncoding ) : '', parameters.envMap ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '', parameters.emissiveMap ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '', parameters.lightMap ? getTexelDecodingFunction( 'lightMapTexelToLinear', parameters.lightMapEncoding ) : '', getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n' ].filter( filterEmptyLine ).join( '\n' ); } vertexShader = resolveIncludes( vertexShader ); vertexShader = replaceLightNums( vertexShader, parameters ); vertexShader = replaceClippingPlaneNums( vertexShader, parameters ); fragmentShader = resolveIncludes( fragmentShader ); fragmentShader = replaceLightNums( fragmentShader, parameters ); fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters ); vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader ); if ( parameters.isWebGL2 && parameters.isRawShaderMaterial !== true ) { // GLSL 3.0 conversion for built-in materials and ShaderMaterial versionString = '#version 300 es\n'; prefixVertex = [ '#define attribute in', '#define varying out', '#define texture2D texture' ].join( '\n' ) + '\n' + prefixVertex; prefixFragment = [ '#define varying in', ( parameters.glslVersion === GLSL3 ) ? '' : 'out highp vec4 pc_fragColor;', ( parameters.glslVersion === GLSL3 ) ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad' ].join( '\n' ) + '\n' + prefixFragment; } var vertexGlsl = versionString + prefixVertex + vertexShader; var fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); var glVertexShader = WebGLShader( gl, 35633, vertexGlsl ); var glFragmentShader = WebGLShader( gl, 35632, fragmentGlsl ); gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader ); // Force a particular attribute to index 0. if ( parameters.index0AttributeName !== undefined ) { gl.bindAttribLocation( program, 0, parameters.index0AttributeName ); } else if ( parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' ); } gl.linkProgram( program ); // check for link errors if ( renderer.debug.checkShaderErrors ) { var programLog = gl.getProgramInfoLog( program ).trim(); var vertexLog = gl.getShaderInfoLog( glVertexShader ).trim(); var fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim(); var runnable = true; var haveDiagnostics = true; if ( gl.getProgramParameter( program, 35714 ) === false ) { runnable = false; var vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' ); var fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' ); console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), '35715', gl.getProgramParameter( program, 35715 ), 'gl.getProgramInfoLog', programLog, vertexErrors, fragmentErrors ); } else if ( programLog !== '' ) { console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog ); } else if ( vertexLog === '' || fragmentLog === '' ) { haveDiagnostics = false; } if ( haveDiagnostics ) { this.diagnostics = { runnable: runnable, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } } // Clean up // Crashes in iOS9 and iOS10. #18402 // gl.detachShader( program, glVertexShader ); // gl.detachShader( program, glFragmentShader ); gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader ); // set up caching for uniform locations var cachedUniforms; this.getUniforms = function () { if ( cachedUniforms === undefined ) { cachedUniforms = new WebGLUniforms( gl, program ); } return cachedUniforms; }; // set up caching for attribute locations var cachedAttributes; this.getAttributes = function () { if ( cachedAttributes === undefined ) { cachedAttributes = fetchAttributeLocations( gl, program ); } return cachedAttributes; }; // free resource this.destroy = function () { bindingStates.releaseStatesOfProgram( this ); gl.deleteProgram( program ); this.program = undefined; }; // this.name = parameters.shaderName; this.id = programIdCount ++; this.cacheKey = cacheKey; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; } function WebGLPrograms( renderer, cubemaps, extensions, capabilities, bindingStates, clipping ) { var programs = []; var isWebGL2 = capabilities.isWebGL2; var logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; var floatVertexTextures = capabilities.floatVertexTextures; var maxVertexUniforms = capabilities.maxVertexUniforms; var vertexTextures = capabilities.vertexTextures; var precision = capabilities.precision; var shaderIDs = { MeshDepthMaterial: 'depth', MeshDistanceMaterial: 'distanceRGBA', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'toon', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', MeshMatcapMaterial: 'matcap', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points', ShadowMaterial: 'shadow', SpriteMaterial: 'sprite' }; var parameterNames = [ "precision", "isWebGL2", "supportsVertexTextures", "outputEncoding", "instancing", "instancingColor", "map", "mapEncoding", "matcap", "matcapEncoding", "envMap", "envMapMode", "envMapEncoding", "envMapCubeUV", "lightMap", "lightMapEncoding", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "objectSpaceNormalMap", "tangentSpaceNormalMap", "clearcoatMap", "clearcoatRoughnessMap", "clearcoatNormalMap", "displacementMap", "specularMap", "roughnessMap", "metalnessMap", "gradientMap", "alphaMap", "combine", "vertexColors", "vertexTangents", "vertexUvs", "uvsVertexOnly", "fog", "useFog", "fogExp2", "flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning", "maxBones", "useVertexTexture", "morphTargets", "morphNormals", "maxMorphTargets", "maxMorphNormals", "premultipliedAlpha", "numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights", "numDirLightShadows", "numPointLightShadows", "numSpotLightShadows", "shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights', "alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering", "sheen", "transmissionMap" ]; function getMaxBones( object ) { var skeleton = object.skeleton; var bones = skeleton.bones; if ( floatVertexTextures ) { return 1024; } else { // default for when object is not specified // ( for example when prebuilding shader to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) var nVertexUniforms = maxVertexUniforms; var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 ); var maxBones = Math.min( nVertexMatrices, bones.length ); if ( maxBones < bones.length ) { console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' ); return 0; } return maxBones; } } function getTextureEncodingFromMap( map ) { var encoding; if ( ! map ) { encoding = LinearEncoding; } else if ( map.isTexture ) { encoding = map.encoding; } else if ( map.isWebGLRenderTarget ) { console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." ); encoding = map.texture.encoding; } return encoding; } function getParameters( material, lights, shadows, scene, object ) { var fog = scene.fog; var environment = material.isMeshStandardMaterial ? scene.environment : null; var envMap = cubemaps.get( material.envMap || environment ); var shaderID = shaderIDs[ material.type ]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) var maxBones = object.isSkinnedMesh ? getMaxBones( object ) : 0; if ( material.precision !== null ) { precision = capabilities.getMaxPrecision( material.precision ); if ( precision !== material.precision ) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); } } var vertexShader, fragmentShader; if ( shaderID ) { var shader = ShaderLib[ shaderID ]; vertexShader = shader.vertexShader; fragmentShader = shader.fragmentShader; } else { vertexShader = material.vertexShader; fragmentShader = material.fragmentShader; } var currentRenderTarget = renderer.getRenderTarget(); var parameters = { isWebGL2: isWebGL2, shaderID: shaderID, shaderName: material.type, vertexShader: vertexShader, fragmentShader: fragmentShader, defines: material.defines, isRawShaderMaterial: material.isRawShaderMaterial === true, glslVersion: material.glslVersion, precision: precision, instancing: object.isInstancedMesh === true, instancingColor: object.isInstancedMesh === true && object.instanceColor !== null, supportsVertexTextures: vertexTextures, outputEncoding: ( currentRenderTarget !== null ) ? getTextureEncodingFromMap( currentRenderTarget.texture ) : renderer.outputEncoding, map: !! material.map, mapEncoding: getTextureEncodingFromMap( material.map ), matcap: !! material.matcap, matcapEncoding: getTextureEncodingFromMap( material.matcap ), envMap: !! envMap, envMapMode: envMap && envMap.mapping, envMapEncoding: getTextureEncodingFromMap( envMap ), envMapCubeUV: ( !! envMap ) && ( ( envMap.mapping === CubeUVReflectionMapping ) || ( envMap.mapping === CubeUVRefractionMapping ) ), lightMap: !! material.lightMap, lightMapEncoding: getTextureEncodingFromMap( material.lightMap ), aoMap: !! material.aoMap, emissiveMap: !! material.emissiveMap, emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap ), bumpMap: !! material.bumpMap, normalMap: !! material.normalMap, objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap, tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap, clearcoatMap: !! material.clearcoatMap, clearcoatRoughnessMap: !! material.clearcoatRoughnessMap, clearcoatNormalMap: !! material.clearcoatNormalMap, displacementMap: !! material.displacementMap, roughnessMap: !! material.roughnessMap, metalnessMap: !! material.metalnessMap, specularMap: !! material.specularMap, alphaMap: !! material.alphaMap, gradientMap: !! material.gradientMap, sheen: !! material.sheen, transmissionMap: !! material.transmissionMap, combine: material.combine, vertexTangents: ( material.normalMap && material.vertexTangents ), vertexColors: material.vertexColors, vertexUvs: !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatMap || !! material.clearcoatRoughnessMap || !! material.clearcoatNormalMap || !! material.displacementMap || !! material.transmissionMap, uvsVertexOnly: ! ( !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatNormalMap || !! material.transmissionMap ) && !! material.displacementMap, fog: !! fog, useFog: material.fog, fogExp2: ( fog && fog.isFogExp2 ), flatShading: material.flatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: logarithmicDepthBuffer, skinning: material.skinning && maxBones > 0, maxBones: maxBones, useVertexTexture: floatVertexTextures, morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: renderer.maxMorphTargets, maxMorphNormals: renderer.maxMorphNormals, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numDirLightShadows: lights.directionalShadowMap.length, numPointLightShadows: lights.pointShadowMap.length, numSpotLightShadows: lights.spotShadowMap.length, numClippingPlanes: clipping.numPlanes, numClipIntersection: clipping.numIntersection, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights, premultipliedAlpha: material.premultipliedAlpha, alphaTest: material.alphaTest, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false, index0AttributeName: material.index0AttributeName, extensionDerivatives: material.extensions && material.extensions.derivatives, extensionFragDepth: material.extensions && material.extensions.fragDepth, extensionDrawBuffers: material.extensions && material.extensions.drawBuffers, extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD, rendererExtensionFragDepth: isWebGL2 || extensions.has( 'EXT_frag_depth' ), rendererExtensionDrawBuffers: isWebGL2 || extensions.has( 'WEBGL_draw_buffers' ), rendererExtensionShaderTextureLod: isWebGL2 || extensions.has( 'EXT_shader_texture_lod' ), customProgramCacheKey: material.customProgramCacheKey() }; return parameters; } function getProgramCacheKey( parameters ) { var array = []; if ( parameters.shaderID ) { array.push( parameters.shaderID ); } else { array.push( parameters.fragmentShader ); array.push( parameters.vertexShader ); } if ( parameters.defines !== undefined ) { for ( var name in parameters.defines ) { array.push( name ); array.push( parameters.defines[ name ] ); } } if ( parameters.isRawShaderMaterial === false ) { for ( var i = 0; i < parameterNames.length; i ++ ) { array.push( parameters[ parameterNames[ i ] ] ); } array.push( renderer.outputEncoding ); array.push( renderer.gammaFactor ); } array.push( parameters.customProgramCacheKey ); return array.join(); } function getUniforms( material ) { var shaderID = shaderIDs[ material.type ]; var uniforms; if ( shaderID ) { var shader = ShaderLib[ shaderID ]; uniforms = UniformsUtils.clone( shader.uniforms ); } else { uniforms = material.uniforms; } return uniforms; } function acquireProgram( parameters, cacheKey ) { var program; // Check if code has been already compiled for ( var p = 0, pl = programs.length; p < pl; p ++ ) { var preexistingProgram = programs[ p ]; if ( preexistingProgram.cacheKey === cacheKey ) { program = preexistingProgram; ++ program.usedTimes; break; } } if ( program === undefined ) { program = new WebGLProgram( renderer, cacheKey, parameters, bindingStates ); programs.push( program ); } return program; } function releaseProgram( program ) { if ( -- program.usedTimes === 0 ) { // Remove from unordered set var i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop(); // Free WebGL resources program.destroy(); } } return { getParameters: getParameters, getProgramCacheKey: getProgramCacheKey, getUniforms: getUniforms, acquireProgram: acquireProgram, releaseProgram: releaseProgram, // Exposed for resource monitoring & error feedback via renderer.info: programs: programs }; } function WebGLProperties() { var properties = new WeakMap(); function get( object ) { var map = properties.get( object ); if ( map === undefined ) { map = {}; properties.set( object, map ); } return map; } function remove( object ) { properties.delete( object ); } function update( object, key, value ) { properties.get( object )[ key ] = value; } function dispose() { properties = new WeakMap(); } return { get: get, remove: remove, update: update, dispose: dispose }; } function painterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.program !== b.program ) { return a.program.id - b.program.id; } else if ( a.material.id !== b.material.id ) { return a.material.id - b.material.id; } else if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } } function WebGLRenderList( properties ) { var renderItems = []; var renderItemsIndex = 0; var opaque = []; var transparent = []; var defaultProgram = { id: - 1 }; function init() { renderItemsIndex = 0; opaque.length = 0; transparent.length = 0; } function getNextRenderItem( object, geometry, material, groupOrder, z, group ) { var renderItem = renderItems[ renderItemsIndex ]; var materialProperties = properties.get( material ); if ( renderItem === undefined ) { renderItem = { id: object.id, object: object, geometry: geometry, material: material, program: materialProperties.program || defaultProgram, groupOrder: groupOrder, renderOrder: object.renderOrder, z: z, group: group }; renderItems[ renderItemsIndex ] = renderItem; } else { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.program = materialProperties.program || defaultProgram; renderItem.groupOrder = groupOrder; renderItem.renderOrder = object.renderOrder; renderItem.z = z; renderItem.group = group; } renderItemsIndex ++; return renderItem; } function push( object, geometry, material, groupOrder, z, group ) { var renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); ( material.transparent === true ? transparent : opaque ).push( renderItem ); } function unshift( object, geometry, material, groupOrder, z, group ) { var renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); ( material.transparent === true ? transparent : opaque ).unshift( renderItem ); } function sort( customOpaqueSort, customTransparentSort ) { if ( opaque.length > 1 ) { opaque.sort( customOpaqueSort || painterSortStable ); } if ( transparent.length > 1 ) { transparent.sort( customTransparentSort || reversePainterSortStable ); } } function finish() { // Clear references from inactive renderItems in the list for ( var i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) { var renderItem = renderItems[ i ]; if ( renderItem.id === null ) { break; } renderItem.id = null; renderItem.object = null; renderItem.geometry = null; renderItem.material = null; renderItem.program = null; renderItem.group = null; } } return { opaque: opaque, transparent: transparent, init: init, push: push, unshift: unshift, finish: finish, sort: sort }; } function WebGLRenderLists( properties ) { var lists = new WeakMap(); function get( scene, camera ) { var cameras = lists.get( scene ); var list; if ( cameras === undefined ) { list = new WebGLRenderList( properties ); lists.set( scene, new WeakMap() ); lists.get( scene ).set( camera, list ); } else { list = cameras.get( camera ); if ( list === undefined ) { list = new WebGLRenderList( properties ); cameras.set( camera, list ); } } return list; } function dispose() { lists = new WeakMap(); } return { get: get, dispose: dispose }; } function UniformsCache() { var lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } var uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color() }; break; case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0 }; break; case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0 }; break; case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() }; break; case 'RectAreaLight': uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() }; break; } lights[ light.id ] = uniforms; return uniforms; } }; } function ShadowUniformsCache() { var lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } var uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'SpotLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'PointLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1000 }; break; // TODO (abelnation): set RectAreaLight shadow uniforms } lights[ light.id ] = uniforms; return uniforms; } }; } var nextVersion = 0; function shadowCastingLightsFirst( lightA, lightB ) { return ( lightB.castShadow ? 1 : 0 ) - ( lightA.castShadow ? 1 : 0 ); } function WebGLLights() { var cache = new UniformsCache(); var shadowCache = ShadowUniformsCache(); var state = { version: 0, hash: { directionalLength: - 1, pointLength: - 1, spotLength: - 1, rectAreaLength: - 1, hemiLength: - 1, numDirectionalShadows: - 1, numPointShadows: - 1, numSpotShadows: - 1 }, ambient: [ 0, 0, 0 ], probe: [], directional: [], directionalShadow: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadow: [], spotShadowMap: [], spotShadowMatrix: [], rectArea: [], rectAreaLTC1: null, rectAreaLTC2: null, point: [], pointShadow: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [] }; for ( var i = 0; i < 9; i ++ ) { state.probe.push( new Vector3() ); } var vector3 = new Vector3(); var matrix4 = new Matrix4(); var matrix42 = new Matrix4(); function setup( lights, shadows, camera ) { var r = 0, g = 0, b = 0; for ( var i = 0; i < 9; i ++ ) { state.probe[ i ].set( 0, 0, 0 ); } var directionalLength = 0; var pointLength = 0; var spotLength = 0; var rectAreaLength = 0; var hemiLength = 0; var numDirectionalShadows = 0; var numPointShadows = 0; var numSpotShadows = 0; var viewMatrix = camera.matrixWorldInverse; lights.sort( shadowCastingLightsFirst ); for ( var i$1 = 0, l = lights.length; i$1 < l; i$1 ++ ) { var light = lights[ i$1 ]; var color = light.color; var intensity = light.intensity; var distance = light.distance; var shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null; if ( light.isAmbientLight ) { r += color.r * intensity; g += color.g * intensity; b += color.b * intensity; } else if ( light.isLightProbe ) { for ( var j = 0; j < 9; j ++ ) { state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity ); } } else if ( light.isDirectionalLight ) { var uniforms = cache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix ); if ( light.castShadow ) { var shadow = light.shadow; var shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.directionalShadow[ directionalLength ] = shadowUniforms; state.directionalShadowMap[ directionalLength ] = shadowMap; state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; numDirectionalShadows ++; } state.directional[ directionalLength ] = uniforms; directionalLength ++; } else if ( light.isSpotLight ) { var uniforms$1 = cache.get( light ); uniforms$1.position.setFromMatrixPosition( light.matrixWorld ); uniforms$1.position.applyMatrix4( viewMatrix ); uniforms$1.color.copy( color ).multiplyScalar( intensity ); uniforms$1.distance = distance; uniforms$1.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms$1.direction.sub( vector3 ); uniforms$1.direction.transformDirection( viewMatrix ); uniforms$1.coneCos = Math.cos( light.angle ); uniforms$1.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); uniforms$1.decay = light.decay; if ( light.castShadow ) { var shadow$1 = light.shadow; var shadowUniforms$1 = shadowCache.get( light ); shadowUniforms$1.shadowBias = shadow$1.bias; shadowUniforms$1.shadowNormalBias = shadow$1.normalBias; shadowUniforms$1.shadowRadius = shadow$1.radius; shadowUniforms$1.shadowMapSize = shadow$1.mapSize; state.spotShadow[ spotLength ] = shadowUniforms$1; state.spotShadowMap[ spotLength ] = shadowMap; state.spotShadowMatrix[ spotLength ] = light.shadow.matrix; numSpotShadows ++; } state.spot[ spotLength ] = uniforms$1; spotLength ++; } else if ( light.isRectAreaLight ) { var uniforms$2 = cache.get( light ); // (a) intensity is the total visible light emitted //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) ); // (b) intensity is the brightness of the light uniforms$2.color.copy( color ).multiplyScalar( intensity ); uniforms$2.position.setFromMatrixPosition( light.matrixWorld ); uniforms$2.position.applyMatrix4( viewMatrix ); // extract local rotation of light to derive width/height half vectors matrix42.identity(); matrix4.copy( light.matrixWorld ); matrix4.premultiply( viewMatrix ); matrix42.extractRotation( matrix4 ); uniforms$2.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms$2.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); uniforms$2.halfWidth.applyMatrix4( matrix42 ); uniforms$2.halfHeight.applyMatrix4( matrix42 ); // TODO (abelnation): RectAreaLight distance? // uniforms.distance = distance; state.rectArea[ rectAreaLength ] = uniforms$2; rectAreaLength ++; } else if ( light.isPointLight ) { var uniforms$3 = cache.get( light ); uniforms$3.position.setFromMatrixPosition( light.matrixWorld ); uniforms$3.position.applyMatrix4( viewMatrix ); uniforms$3.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms$3.distance = light.distance; uniforms$3.decay = light.decay; if ( light.castShadow ) { var shadow$2 = light.shadow; var shadowUniforms$2 = shadowCache.get( light ); shadowUniforms$2.shadowBias = shadow$2.bias; shadowUniforms$2.shadowNormalBias = shadow$2.normalBias; shadowUniforms$2.shadowRadius = shadow$2.radius; shadowUniforms$2.shadowMapSize = shadow$2.mapSize; shadowUniforms$2.shadowCameraNear = shadow$2.camera.near; shadowUniforms$2.shadowCameraFar = shadow$2.camera.far; state.pointShadow[ pointLength ] = shadowUniforms$2; state.pointShadowMap[ pointLength ] = shadowMap; state.pointShadowMatrix[ pointLength ] = light.shadow.matrix; numPointShadows ++; } state.point[ pointLength ] = uniforms$3; pointLength ++; } else if ( light.isHemisphereLight ) { var uniforms$4 = cache.get( light ); uniforms$4.direction.setFromMatrixPosition( light.matrixWorld ); uniforms$4.direction.transformDirection( viewMatrix ); uniforms$4.direction.normalize(); uniforms$4.skyColor.copy( light.color ).multiplyScalar( intensity ); uniforms$4.groundColor.copy( light.groundColor ).multiplyScalar( intensity ); state.hemi[ hemiLength ] = uniforms$4; hemiLength ++; } } if ( rectAreaLength > 0 ) { state.rectAreaLTC1 = UniformsLib.LTC_1; state.rectAreaLTC2 = UniformsLib.LTC_2; } state.ambient[ 0 ] = r; state.ambient[ 1 ] = g; state.ambient[ 2 ] = b; var hash = state.hash; if ( hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows ) { state.directional.length = directionalLength; state.spot.length = spotLength; state.rectArea.length = rectAreaLength; state.point.length = pointLength; state.hemi.length = hemiLength; state.directionalShadow.length = numDirectionalShadows; state.directionalShadowMap.length = numDirectionalShadows; state.pointShadow.length = numPointShadows; state.pointShadowMap.length = numPointShadows; state.spotShadow.length = numSpotShadows; state.spotShadowMap.length = numSpotShadows; state.directionalShadowMatrix.length = numDirectionalShadows; state.pointShadowMatrix.length = numPointShadows; state.spotShadowMatrix.length = numSpotShadows; hash.directionalLength = directionalLength; hash.pointLength = pointLength; hash.spotLength = spotLength; hash.rectAreaLength = rectAreaLength; hash.hemiLength = hemiLength; hash.numDirectionalShadows = numDirectionalShadows; hash.numPointShadows = numPointShadows; hash.numSpotShadows = numSpotShadows; state.version = nextVersion ++; } } return { setup: setup, state: state }; } function WebGLRenderState() { var lights = new WebGLLights(); var lightsArray = []; var shadowsArray = []; function init() { lightsArray.length = 0; shadowsArray.length = 0; } function pushLight( light ) { lightsArray.push( light ); } function pushShadow( shadowLight ) { shadowsArray.push( shadowLight ); } function setupLights( camera ) { lights.setup( lightsArray, shadowsArray, camera ); } var state = { lightsArray: lightsArray, shadowsArray: shadowsArray, lights: lights }; return { init: init, state: state, setupLights: setupLights, pushLight: pushLight, pushShadow: pushShadow }; } function WebGLRenderStates() { var renderStates = new WeakMap(); function get( scene, camera ) { var renderState; if ( renderStates.has( scene ) === false ) { renderState = new WebGLRenderState(); renderStates.set( scene, new WeakMap() ); renderStates.get( scene ).set( camera, renderState ); } else { if ( renderStates.get( scene ).has( camera ) === false ) { renderState = new WebGLRenderState(); renderStates.get( scene ).set( camera, renderState ); } else { renderState = renderStates.get( scene ).get( camera ); } } return renderState; } function dispose() { renderStates = new WeakMap(); } return { get: get, dispose: dispose }; } /** * parameters = { * * opacity: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * } */ function MeshDepthMaterial( parameters ) { Material.call( this ); this.type = 'MeshDepthMaterial'; this.depthPacking = BasicDepthPacking; this.skinning = false; this.morphTargets = false; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.setValues( parameters ); } MeshDepthMaterial.prototype = Object.create( Material.prototype ); MeshDepthMaterial.prototype.constructor = MeshDepthMaterial; MeshDepthMaterial.prototype.isMeshDepthMaterial = true; MeshDepthMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.depthPacking = source.depthPacking; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; }; /** * parameters = { * * referencePosition: , * nearDistance: , * farDistance: , * * skinning: , * morphTargets: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: * * } */ function MeshDistanceMaterial( parameters ) { Material.call( this ); this.type = 'MeshDistanceMaterial'; this.referencePosition = new Vector3(); this.nearDistance = 1; this.farDistance = 1000; this.skinning = false; this.morphTargets = false; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.fog = false; this.setValues( parameters ); } MeshDistanceMaterial.prototype = Object.create( Material.prototype ); MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial; MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true; MeshDistanceMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.referencePosition.copy( source.referencePosition ); this.nearDistance = source.nearDistance; this.farDistance = source.farDistance; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; return this; }; var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy ) / resolution ) );\n\tfor ( float i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {\n\t\t#ifdef HORIZONAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, i ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean * HALF_SAMPLE_RATE;\n\tsquared_mean = squared_mean * HALF_SAMPLE_RATE;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}"; function WebGLShadowMap( _renderer, _objects, maxTextureSize ) { var _frustum = new Frustum(); var _shadowMapSize = new Vector2(), _viewportSize = new Vector2(), _viewport = new Vector4(), _depthMaterials = [], _distanceMaterials = [], _materialCache = {}; var shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide }; var shadowMaterialVertical = new ShaderMaterial( { defines: { SAMPLE_RATE: 2.0 / 8.0, HALF_SAMPLE_RATE: 1.0 / 8.0 }, uniforms: { shadow_pass: { value: null }, resolution: { value: new Vector2() }, radius: { value: 4.0 } }, vertexShader: vsm_vert, fragmentShader: vsm_frag } ); var shadowMaterialHorizonal = shadowMaterialVertical.clone(); shadowMaterialHorizonal.defines.HORIZONAL_PASS = 1; var fullScreenTri = new BufferGeometry(); fullScreenTri.setAttribute( "position", new BufferAttribute( new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ), 3 ) ); var fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical ); var scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = PCFShadowMap; this.render = function ( lights, scene, camera ) { if ( scope.enabled === false ) { return; } if ( scope.autoUpdate === false && scope.needsUpdate === false ) { return; } if ( lights.length === 0 ) { return; } var currentRenderTarget = _renderer.getRenderTarget(); var activeCubeFace = _renderer.getActiveCubeFace(); var activeMipmapLevel = _renderer.getActiveMipmapLevel(); var _state = _renderer.state; // Set GL state for depth map. _state.setBlending( NoBlending ); _state.buffers.color.setClear( 1, 1, 1, 1 ); _state.buffers.depth.setTest( true ); _state.setScissorTest( false ); // render depth map for ( var i = 0, il = lights.length; i < il; i ++ ) { var light = lights[ i ]; var shadow = light.shadow; if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) { continue; } if ( shadow === undefined ) { console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); continue; } _shadowMapSize.copy( shadow.mapSize ); var shadowFrameExtents = shadow.getFrameExtents(); _shadowMapSize.multiply( shadowFrameExtents ); _viewportSize.copy( shadow.mapSize ); if ( _shadowMapSize.x > maxTextureSize || _shadowMapSize.y > maxTextureSize ) { if ( _shadowMapSize.x > maxTextureSize ) { _viewportSize.x = Math.floor( maxTextureSize / shadowFrameExtents.x ); _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; shadow.mapSize.x = _viewportSize.x; } if ( _shadowMapSize.y > maxTextureSize ) { _viewportSize.y = Math.floor( maxTextureSize / shadowFrameExtents.y ); _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; shadow.mapSize.y = _viewportSize.y; } } if ( shadow.map === null && ! shadow.isPointLightShadow && this.type === VSMShadowMap ) { var pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat }; shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.map.texture.name = light.name + ".shadowMap"; shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.camera.updateProjectionMatrix(); } if ( shadow.map === null ) { var pars$1 = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat }; shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars$1 ); shadow.map.texture.name = light.name + ".shadowMap"; shadow.camera.updateProjectionMatrix(); } _renderer.setRenderTarget( shadow.map ); _renderer.clear(); var viewportCount = shadow.getViewportCount(); for ( var vp = 0; vp < viewportCount; vp ++ ) { var viewport = shadow.getViewport( vp ); _viewport.set( _viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w ); _state.viewport( _viewport ); shadow.updateMatrices( light, vp ); _frustum = shadow.getFrustum(); renderObject( scene, camera, shadow.camera, light, this.type ); } // do blur pass for VSM if ( ! shadow.isPointLightShadow && this.type === VSMShadowMap ) { VSMPass( shadow, camera ); } shadow.needsUpdate = false; } scope.needsUpdate = false; _renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel ); }; function VSMPass( shadow, camera ) { var geometry = _objects.update( fullScreenMesh ); // vertical pass shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; shadowMaterialVertical.uniforms.radius.value = shadow.radius; _renderer.setRenderTarget( shadow.mapPass ); _renderer.clear(); _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null ); // horizonal pass shadowMaterialHorizonal.uniforms.shadow_pass.value = shadow.mapPass.texture; shadowMaterialHorizonal.uniforms.resolution.value = shadow.mapSize; shadowMaterialHorizonal.uniforms.radius.value = shadow.radius; _renderer.setRenderTarget( shadow.map ); _renderer.clear(); _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizonal, fullScreenMesh, null ); } function getDepthMaterialVariant( useMorphing, useSkinning, useInstancing ) { var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2; var material = _depthMaterials[ index ]; if ( material === undefined ) { material = new MeshDepthMaterial( { depthPacking: RGBADepthPacking, morphTargets: useMorphing, skinning: useSkinning } ); _depthMaterials[ index ] = material; } return material; } function getDistanceMaterialVariant( useMorphing, useSkinning, useInstancing ) { var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2; var material = _distanceMaterials[ index ]; if ( material === undefined ) { material = new MeshDistanceMaterial( { morphTargets: useMorphing, skinning: useSkinning } ); _distanceMaterials[ index ] = material; } return material; } function getDepthMaterial( object, geometry, material, light, shadowCameraNear, shadowCameraFar, type ) { var result = null; var getMaterialVariant = getDepthMaterialVariant; var customMaterial = object.customDepthMaterial; if ( light.isPointLight === true ) { getMaterialVariant = getDistanceMaterialVariant; customMaterial = object.customDistanceMaterial; } if ( customMaterial === undefined ) { var useMorphing = false; if ( material.morphTargets === true ) { useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0; } var useSkinning = false; if ( object.isSkinnedMesh === true ) { if ( material.skinning === true ) { useSkinning = true; } else { console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object ); } } var useInstancing = object.isInstancedMesh === true; result = getMaterialVariant( useMorphing, useSkinning, useInstancing ); } else { result = customMaterial; } if ( _renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 ) { // in this case we need a unique material instance reflecting the // appropriate state var keyA = result.uuid, keyB = material.uuid; var materialsForVariant = _materialCache[ keyA ]; if ( materialsForVariant === undefined ) { materialsForVariant = {}; _materialCache[ keyA ] = materialsForVariant; } var cachedMaterial = materialsForVariant[ keyB ]; if ( cachedMaterial === undefined ) { cachedMaterial = result.clone(); materialsForVariant[ keyB ] = cachedMaterial; } result = cachedMaterial; } result.visible = material.visible; result.wireframe = material.wireframe; if ( type === VSMShadowMap ) { result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side; } else { result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ]; } result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.clipIntersection = material.clipIntersection; result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth; if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) { result.referencePosition.setFromMatrixPosition( light.matrixWorld ); result.nearDistance = shadowCameraNear; result.farDistance = shadowCameraFar; } return result; } function renderObject( object, camera, shadowCamera, light, type ) { if ( object.visible === false ) { return; } var visible = object.layers.test( camera.layers ); if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) { if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); var geometry = _objects.update( object ); var material = object.material; if ( Array.isArray( material ) ) { var groups = geometry.groups; for ( var k = 0, kl = groups.length; k < kl; k ++ ) { var group = groups[ k ]; var groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { var depthMaterial = getDepthMaterial( object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); } } } else if ( material.visible ) { var depthMaterial$1 = getDepthMaterial( object, geometry, material, light, shadowCamera.near, shadowCamera.far, type ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial$1, object, null ); } } } var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { renderObject( children[ i ], camera, shadowCamera, light, type ); } } } function WebGLState( gl, extensions, capabilities ) { var isWebGL2 = capabilities.isWebGL2; function ColorBuffer() { var locked = false; var color = new Vector4(); var currentColorMask = null; var currentColorClear = new Vector4( 0, 0, 0, 0 ); return { setMask: function ( colorMask ) { if ( currentColorMask !== colorMask && ! locked ) { gl.colorMask( colorMask, colorMask, colorMask, colorMask ); currentColorMask = colorMask; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( r, g, b, a, premultipliedAlpha ) { if ( premultipliedAlpha === true ) { r *= a; g *= a; b *= a; } color.set( r, g, b, a ); if ( currentColorClear.equals( color ) === false ) { gl.clearColor( r, g, b, a ); currentColorClear.copy( color ); } }, reset: function () { locked = false; currentColorMask = null; currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state } }; } function DepthBuffer() { var locked = false; var currentDepthMask = null; var currentDepthFunc = null; var currentDepthClear = null; return { setTest: function ( depthTest ) { if ( depthTest ) { enable( 2929 ); } else { disable( 2929 ); } }, setMask: function ( depthMask ) { if ( currentDepthMask !== depthMask && ! locked ) { gl.depthMask( depthMask ); currentDepthMask = depthMask; } }, setFunc: function ( depthFunc ) { if ( currentDepthFunc !== depthFunc ) { if ( depthFunc ) { switch ( depthFunc ) { case NeverDepth: gl.depthFunc( 512 ); break; case AlwaysDepth: gl.depthFunc( 519 ); break; case LessDepth: gl.depthFunc( 513 ); break; case LessEqualDepth: gl.depthFunc( 515 ); break; case EqualDepth: gl.depthFunc( 514 ); break; case GreaterEqualDepth: gl.depthFunc( 518 ); break; case GreaterDepth: gl.depthFunc( 516 ); break; case NotEqualDepth: gl.depthFunc( 517 ); break; default: gl.depthFunc( 515 ); } } else { gl.depthFunc( 515 ); } currentDepthFunc = depthFunc; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( depth ) { if ( currentDepthClear !== depth ) { gl.clearDepth( depth ); currentDepthClear = depth; } }, reset: function () { locked = false; currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null; } }; } function StencilBuffer() { var locked = false; var currentStencilMask = null; var currentStencilFunc = null; var currentStencilRef = null; var currentStencilFuncMask = null; var currentStencilFail = null; var currentStencilZFail = null; var currentStencilZPass = null; var currentStencilClear = null; return { setTest: function ( stencilTest ) { if ( ! locked ) { if ( stencilTest ) { enable( 2960 ); } else { disable( 2960 ); } } }, setMask: function ( stencilMask ) { if ( currentStencilMask !== stencilMask && ! locked ) { gl.stencilMask( stencilMask ); currentStencilMask = stencilMask; } }, setFunc: function ( stencilFunc, stencilRef, stencilMask ) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask ) { gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask; } }, setOp: function ( stencilFail, stencilZFail, stencilZPass ) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( stencil ) { if ( currentStencilClear !== stencil ) { gl.clearStencil( stencil ); currentStencilClear = stencil; } }, reset: function () { locked = false; currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null; } }; } // var colorBuffer = new ColorBuffer(); var depthBuffer = new DepthBuffer(); var stencilBuffer = new StencilBuffer(); var enabledCapabilities = {}; var currentProgram = null; var currentBlendingEnabled = null; var currentBlending = null; var currentBlendEquation = null; var currentBlendSrc = null; var currentBlendDst = null; var currentBlendEquationAlpha = null; var currentBlendSrcAlpha = null; var currentBlendDstAlpha = null; var currentPremultipledAlpha = false; var currentFlipSided = null; var currentCullFace = null; var currentLineWidth = null; var currentPolygonOffsetFactor = null; var currentPolygonOffsetUnits = null; var maxTextures = gl.getParameter( 35661 ); var lineWidthAvailable = false; var version = 0; var glVersion = gl.getParameter( 7938 ); if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) { version = parseFloat( /^WebGL\ ([0-9])/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 1.0 ); } else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) { version = parseFloat( /^OpenGL\ ES\ ([0-9])/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 2.0 ); } var currentTextureSlot = null; var currentBoundTextures = {}; var currentScissor = new Vector4(); var currentViewport = new Vector4(); function createTexture( type, target, count ) { var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. var texture = gl.createTexture(); gl.bindTexture( type, texture ); gl.texParameteri( type, 10241, 9728 ); gl.texParameteri( type, 10240, 9728 ); for ( var i = 0; i < count; i ++ ) { gl.texImage2D( target + i, 0, 6408, 1, 1, 0, 6408, 5121, data ); } return texture; } var emptyTextures = {}; emptyTextures[ 3553 ] = createTexture( 3553, 3553, 1 ); emptyTextures[ 34067 ] = createTexture( 34067, 34069, 6 ); // init colorBuffer.setClear( 0, 0, 0, 1 ); depthBuffer.setClear( 1 ); stencilBuffer.setClear( 0 ); enable( 2929 ); depthBuffer.setFunc( LessEqualDepth ); setFlipSided( false ); setCullFace( CullFaceBack ); enable( 2884 ); setBlending( NoBlending ); // function enable( id ) { if ( enabledCapabilities[ id ] !== true ) { gl.enable( id ); enabledCapabilities[ id ] = true; } } function disable( id ) { if ( enabledCapabilities[ id ] !== false ) { gl.disable( id ); enabledCapabilities[ id ] = false; } } function useProgram( program ) { if ( currentProgram !== program ) { gl.useProgram( program ); currentProgram = program; return true; } return false; } var equationToGL = {}; equationToGL[ AddEquation ] = 32774; equationToGL[ SubtractEquation ] = 32778; equationToGL[ ReverseSubtractEquation ] = 32779; if ( isWebGL2 ) { equationToGL[ MinEquation ] = 32775; equationToGL[ MaxEquation ] = 32776; } else { var extension = extensions.get( 'EXT_blend_minmax' ); if ( extension !== null ) { equationToGL[ MinEquation ] = extension.MIN_EXT; equationToGL[ MaxEquation ] = extension.MAX_EXT; } } var factorToGL = {}; factorToGL[ ZeroFactor ] = 0; factorToGL[ OneFactor ] = 1; factorToGL[ SrcColorFactor ] = 768; factorToGL[ SrcAlphaFactor ] = 770; factorToGL[ SrcAlphaSaturateFactor ] = 776; factorToGL[ DstColorFactor ] = 774; factorToGL[ DstAlphaFactor ] = 772; factorToGL[ OneMinusSrcColorFactor ] = 769; factorToGL[ OneMinusSrcAlphaFactor ] = 771; factorToGL[ OneMinusDstColorFactor ] = 775; factorToGL[ OneMinusDstAlphaFactor ] = 773; function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { if ( blending === NoBlending ) { if ( currentBlendingEnabled ) { disable( 3042 ); currentBlendingEnabled = false; } return; } if ( ! currentBlendingEnabled ) { enable( 3042 ); currentBlendingEnabled = true; } if ( blending !== CustomBlending ) { if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) { if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) { gl.blendEquation( 32774 ); currentBlendEquation = AddEquation; currentBlendEquationAlpha = AddEquation; } if ( premultipliedAlpha ) { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( 1, 771, 1, 771 ); break; case AdditiveBlending: gl.blendFunc( 1, 1 ); break; case SubtractiveBlending: gl.blendFuncSeparate( 0, 0, 769, 771 ); break; case MultiplyBlending: gl.blendFuncSeparate( 0, 768, 0, 770 ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } else { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( 770, 771, 1, 771 ); break; case AdditiveBlending: gl.blendFunc( 770, 1 ); break; case SubtractiveBlending: gl.blendFunc( 0, 769 ); break; case MultiplyBlending: gl.blendFunc( 0, 768 ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } currentBlendSrc = null; currentBlendDst = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } return; } // custom blending blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] ); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] ); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } currentBlending = blending; currentPremultipledAlpha = null; } function setMaterial( material, frontFaceCW ) { material.side === DoubleSide ? disable( 2884 ) : enable( 2884 ); var flipSided = ( material.side === BackSide ); if ( frontFaceCW ) { flipSided = ! flipSided; } setFlipSided( flipSided ); ( material.blending === NormalBlending && material.transparent === false ) ? setBlending( NoBlending ) : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ); depthBuffer.setFunc( material.depthFunc ); depthBuffer.setTest( material.depthTest ); depthBuffer.setMask( material.depthWrite ); colorBuffer.setMask( material.colorWrite ); var stencilWrite = material.stencilWrite; stencilBuffer.setTest( stencilWrite ); if ( stencilWrite ) { stencilBuffer.setMask( material.stencilWriteMask ); stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask ); stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass ); } setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } // function setFlipSided( flipSided ) { if ( currentFlipSided !== flipSided ) { if ( flipSided ) { gl.frontFace( 2304 ); } else { gl.frontFace( 2305 ); } currentFlipSided = flipSided; } } function setCullFace( cullFace ) { if ( cullFace !== CullFaceNone ) { enable( 2884 ); if ( cullFace !== currentCullFace ) { if ( cullFace === CullFaceBack ) { gl.cullFace( 1029 ); } else if ( cullFace === CullFaceFront ) { gl.cullFace( 1028 ); } else { gl.cullFace( 1032 ); } } } else { disable( 2884 ); } currentCullFace = cullFace; } function setLineWidth( width ) { if ( width !== currentLineWidth ) { if ( lineWidthAvailable ) { gl.lineWidth( width ); } currentLineWidth = width; } } function setPolygonOffset( polygonOffset, factor, units ) { if ( polygonOffset ) { enable( 32823 ); if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) { gl.polygonOffset( factor, units ); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } } else { disable( 32823 ); } } function setScissorTest( scissorTest ) { if ( scissorTest ) { enable( 3089 ); } else { disable( 3089 ); } } // texture function activeTexture( webglSlot ) { if ( webglSlot === undefined ) { webglSlot = 33984 + maxTextures - 1; } if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } } function bindTexture( webglType, webglTexture ) { if ( currentTextureSlot === null ) { activeTexture(); } var boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture === undefined ) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ currentTextureSlot ] = boundTexture; } if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] ); boundTexture.type = webglType; boundTexture.texture = webglTexture; } } function unbindTexture() { var boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture !== undefined && boundTexture.type !== undefined ) { gl.bindTexture( boundTexture.type, null ); boundTexture.type = undefined; boundTexture.texture = undefined; } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage2D() { try { gl.texImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage3D() { try { gl.texImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } // function scissor( scissor ) { if ( currentScissor.equals( scissor ) === false ) { gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor ); } } function viewport( viewport ) { if ( currentViewport.equals( viewport ) === false ) { gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport ); } } // function reset() { enabledCapabilities = {}; currentTextureSlot = null; currentBoundTextures = {}; currentProgram = null; currentBlending = null; currentFlipSided = null; currentCullFace = null; colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset(); } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, enable: enable, disable: disable, useProgram: useProgram, setBlending: setBlending, setMaterial: setMaterial, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, unbindTexture: unbindTexture, compressedTexImage2D: compressedTexImage2D, texImage2D: texImage2D, texImage3D: texImage3D, scissor: scissor, viewport: viewport, reset: reset }; } function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) { var isWebGL2 = capabilities.isWebGL2; var maxTextures = capabilities.maxTextures; var maxCubemapSize = capabilities.maxCubemapSize; var maxTextureSize = capabilities.maxTextureSize; var maxSamples = capabilities.maxSamples; var _videoTextures = new WeakMap(); var _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). var useOffscreenCanvas = false; try { useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && ( new OffscreenCanvas( 1, 1 ).getContext( "2d" ) ) !== null; } catch ( err ) { // Ignore any errors } function createCanvas( width, height ) { // Use OffscreenCanvas when available. Specially needed in web workers return useOffscreenCanvas ? new OffscreenCanvas( width, height ) : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); } function resizeImage( image, needsPowerOfTwo, needsNewCanvas, maxSize ) { var scale = 1; // handle case if texture exceeds max size if ( image.width > maxSize || image.height > maxSize ) { scale = maxSize / Math.max( image.width, image.height ); } // only perform resize if necessary if ( scale < 1 || needsPowerOfTwo === true ) { // only perform resize for certain image types if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { var floor = needsPowerOfTwo ? MathUtils.floorPowerOfTwo : Math.floor; var width = floor( scale * image.width ); var height = floor( scale * image.height ); if ( _canvas === undefined ) { _canvas = createCanvas( width, height ); } // cube textures can't reuse the same canvas var canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas; canvas.width = width; canvas.height = height; var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, width, height ); console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').' ); return canvas; } else { if ( 'data' in image ) { console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').' ); } return image; } } return image; } function isPowerOfTwo( image ) { return MathUtils.isPowerOfTwo( image.width ) && MathUtils.isPowerOfTwo( image.height ); } function textureNeedsPowerOfTwo( texture ) { if ( isWebGL2 ) { return false; } return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) || ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ); } function textureNeedsGenerateMipmaps( texture, supportsMips ) { return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; } function generateMipmap( target, texture, width, height ) { _gl.generateMipmap( target ); var textureProperties = properties.get( texture ); // Note: Math.log( x ) * Math.LOG2E used instead of Math.log2( x ) which is not supported by IE11 textureProperties.__maxMipLevel = Math.log( Math.max( width, height ) ) * Math.LOG2E; } function getInternalFormat( internalFormatName, glFormat, glType ) { if ( isWebGL2 === false ) { return glFormat; } if ( internalFormatName !== null ) { if ( _gl[ internalFormatName ] !== undefined ) { return _gl[ internalFormatName ]; } console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' ); } var internalFormat = glFormat; if ( glFormat === 6403 ) { if ( glType === 5126 ) { internalFormat = 33326; } if ( glType === 5131 ) { internalFormat = 33325; } if ( glType === 5121 ) { internalFormat = 33321; } } if ( glFormat === 6407 ) { if ( glType === 5126 ) { internalFormat = 34837; } if ( glType === 5131 ) { internalFormat = 34843; } if ( glType === 5121 ) { internalFormat = 32849; } } if ( glFormat === 6408 ) { if ( glType === 5126 ) { internalFormat = 34836; } if ( glType === 5131 ) { internalFormat = 34842; } if ( glType === 5121 ) { internalFormat = 32856; } } if ( internalFormat === 33325 || internalFormat === 33326 || internalFormat === 34842 || internalFormat === 34836 ) { extensions.get( 'EXT_color_buffer_float' ); } return internalFormat; } // Fallback filters for non-power-of-2 textures function filterFallback( f ) { if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) { return 9728; } return 9729; } // function onTextureDispose( event ) { var texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); if ( texture.isVideoTexture ) { _videoTextures.delete( texture ); } info.memory.textures --; } function onRenderTargetDispose( event ) { var renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); info.memory.textures --; } // function deallocateTexture( texture ) { var textureProperties = properties.get( texture ); if ( textureProperties.__webglInit === undefined ) { return; } _gl.deleteTexture( textureProperties.__webglTexture ); properties.remove( texture ); } function deallocateRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); if ( ! renderTarget ) { return; } if ( textureProperties.__webglTexture !== undefined ) { _gl.deleteTexture( textureProperties.__webglTexture ); } if ( renderTarget.depthTexture ) { renderTarget.depthTexture.dispose(); } if ( renderTarget.isWebGLCubeRenderTarget ) { for ( var i = 0; i < 6; i ++ ) { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); if ( renderTargetProperties.__webglDepthbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } } } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); if ( renderTargetProperties.__webglDepthbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); } if ( renderTargetProperties.__webglMultisampledFramebuffer ) { _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer ); } if ( renderTargetProperties.__webglColorRenderbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer ); } if ( renderTargetProperties.__webglDepthRenderbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer ); } } properties.remove( renderTarget.texture ); properties.remove( renderTarget ); } // var textureUnits = 0; function resetTextureUnits() { textureUnits = 0; } function allocateTextureUnit() { var textureUnit = textureUnits; if ( textureUnit >= maxTextures ) { console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures ); } textureUnits += 1; return textureUnit; } // function setTexture2D( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.isVideoTexture ) { updateVideoTexture( texture ); } if ( texture.version > 0 && textureProperties.__version !== texture.version ) { var image = texture.image; if ( image === undefined ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined' ); } else if ( image.complete === false ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' ); } else { uploadTexture( textureProperties, texture, slot ); return; } } state.activeTexture( 33984 + slot ); state.bindTexture( 3553, textureProperties.__webglTexture ); } function setTexture2DArray( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.activeTexture( 33984 + slot ); state.bindTexture( 35866, textureProperties.__webglTexture ); } function setTexture3D( texture, slot ) { var textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.activeTexture( 33984 + slot ); state.bindTexture( 32879, textureProperties.__webglTexture ); } function setTextureCube( texture, slot ) { if ( texture.image.length !== 6 ) { return; } var textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { initTexture( textureProperties, texture ); state.activeTexture( 33984 + slot ); state.bindTexture( 34067, textureProperties.__webglTexture ); _gl.pixelStorei( 37440, texture.flipY ); var isCompressed = ( texture && ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ) ); var isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture ); var cubeImage = []; for ( var i = 0; i < 6; i ++ ) { if ( ! isCompressed && ! isDataTexture ) { cubeImage[ i ] = resizeImage( texture.image[ i ], false, true, maxCubemapSize ); } else { cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; } } var image = cubeImage[ 0 ], supportsMips = isPowerOfTwo( image ) || isWebGL2, glFormat = utils.convert( texture.format ), glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType ); setTextureParameters( 34067, texture, supportsMips ); var mipmaps; if ( isCompressed ) { for ( var i$1 = 0; i$1 < 6; i$1 ++ ) { mipmaps = cubeImage[ i$1 ].mipmaps; for ( var j = 0; j < mipmaps.length; j ++ ) { var mipmap = mipmaps[ j ]; if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { if ( glFormat !== null ) { state.compressedTexImage2D( 34069 + i$1, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' ); } } else { state.texImage2D( 34069 + i$1, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } textureProperties.__maxMipLevel = mipmaps.length - 1; } else { mipmaps = texture.mipmaps; for ( var i$2 = 0; i$2 < 6; i$2 ++ ) { if ( isDataTexture ) { state.texImage2D( 34069 + i$2, 0, glInternalFormat, cubeImage[ i$2 ].width, cubeImage[ i$2 ].height, 0, glFormat, glType, cubeImage[ i$2 ].data ); for ( var j$1 = 0; j$1 < mipmaps.length; j$1 ++ ) { var mipmap$1 = mipmaps[ j$1 ]; var mipmapImage = mipmap$1.image[ i$2 ].image; state.texImage2D( 34069 + i$2, j$1 + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data ); } } else { state.texImage2D( 34069 + i$2, 0, glInternalFormat, glFormat, glType, cubeImage[ i$2 ] ); for ( var j$2 = 0; j$2 < mipmaps.length; j$2 ++ ) { var mipmap$2 = mipmaps[ j$2 ]; state.texImage2D( 34069 + i$2, j$2 + 1, glInternalFormat, glFormat, glType, mipmap$2.image[ i$2 ] ); } } } textureProperties.__maxMipLevel = mipmaps.length; } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { // We assume images for cube map have the same size. generateMipmap( 34067, texture, image.width, image.height ); } textureProperties.__version = texture.version; if ( texture.onUpdate ) { texture.onUpdate( texture ); } } else { state.activeTexture( 33984 + slot ); state.bindTexture( 34067, textureProperties.__webglTexture ); } } function setTextureCubeDynamic( texture, slot ) { state.activeTexture( 33984 + slot ); state.bindTexture( 34067, properties.get( texture ).__webglTexture ); } var wrappingToGL = {}; wrappingToGL[ RepeatWrapping ] = 10497; wrappingToGL[ ClampToEdgeWrapping ] = 33071; wrappingToGL[ MirroredRepeatWrapping ] = 33648; var filterToGL = {}; filterToGL[ NearestFilter ] = 9728; filterToGL[ NearestMipmapNearestFilter ] = 9984; filterToGL[ NearestMipmapLinearFilter ] = 9986; filterToGL[ LinearFilter ] = 9729; filterToGL[ LinearMipmapNearestFilter ] = 9985; filterToGL[ LinearMipmapLinearFilter ] = 9987; function setTextureParameters( textureType, texture, supportsMips ) { if ( supportsMips ) { _gl.texParameteri( textureType, 10242, wrappingToGL[ texture.wrapS ] ); _gl.texParameteri( textureType, 10243, wrappingToGL[ texture.wrapT ] ); if ( textureType === 32879 || textureType === 35866 ) { _gl.texParameteri( textureType, 32882, wrappingToGL[ texture.wrapR ] ); } _gl.texParameteri( textureType, 10240, filterToGL[ texture.magFilter ] ); _gl.texParameteri( textureType, 10241, filterToGL[ texture.minFilter ] ); } else { _gl.texParameteri( textureType, 10242, 33071 ); _gl.texParameteri( textureType, 10243, 33071 ); if ( textureType === 32879 || textureType === 35866 ) { _gl.texParameteri( textureType, 32882, 33071 ); } if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' ); } _gl.texParameteri( textureType, 10240, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, 10241, filterFallback( texture.minFilter ) ); if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' ); } } var extension = extensions.get( 'EXT_texture_filter_anisotropic' ); if ( extension ) { if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) { return; } if ( texture.type === HalfFloatType && ( isWebGL2 || extensions.get( 'OES_texture_half_float_linear' ) ) === null ) { return; } if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy; } } } function initTexture( textureProperties, texture ) { if ( textureProperties.__webglInit === undefined ) { textureProperties.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); textureProperties.__webglTexture = _gl.createTexture(); info.memory.textures ++; } } function uploadTexture( textureProperties, texture, slot ) { var textureType = 3553; if ( texture.isDataTexture2DArray ) { textureType = 35866; } if ( texture.isDataTexture3D ) { textureType = 32879; } initTexture( textureProperties, texture ); state.activeTexture( 33984 + slot ); state.bindTexture( textureType, textureProperties.__webglTexture ); _gl.pixelStorei( 37440, texture.flipY ); _gl.pixelStorei( 37441, texture.premultiplyAlpha ); _gl.pixelStorei( 3317, texture.unpackAlignment ); var needsPowerOfTwo = textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( texture.image ) === false; var image = resizeImage( texture.image, needsPowerOfTwo, false, maxTextureSize ); var supportsMips = isPowerOfTwo( image ) || isWebGL2, glFormat = utils.convert( texture.format ); var glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType ); setTextureParameters( textureType, texture, supportsMips ); var mipmap; var mipmaps = texture.mipmaps; if ( texture.isDepthTexture ) { // populate depth texture with dummy data glInternalFormat = 6402; if ( isWebGL2 ) { if ( texture.type === FloatType ) { glInternalFormat = 36012; } else if ( texture.type === UnsignedIntType ) { glInternalFormat = 33190; } else if ( texture.type === UnsignedInt248Type ) { glInternalFormat = 35056; } else { glInternalFormat = 33189; // WebGL2 requires sized internalformat for glTexImage2D } } else { if ( texture.type === FloatType ) { console.error( 'WebGLRenderer: Floating point depth texture requires WebGL2.' ); } } // validation checks for WebGL 1 if ( texture.format === DepthFormat && glInternalFormat === 6402 ) { // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' ); texture.type = UnsignedShortType; glType = utils.convert( texture.type ); } } if ( texture.format === DepthStencilFormat && glInternalFormat === 6402 ) { // Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) glInternalFormat = 34041; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedInt248Type ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' ); texture.type = UnsignedInt248Type; glType = utils.convert( texture.type ); } } // state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null ); } else if ( texture.isDataTexture ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && supportsMips ) { for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } texture.generateMipmaps = false; textureProperties.__maxMipLevel = mipmaps.length - 1; } else { state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data ); textureProperties.__maxMipLevel = 0; } } else if ( texture.isCompressedTexture ) { for ( var i$1 = 0, il$1 = mipmaps.length; i$1 < il$1; i$1 ++ ) { mipmap = mipmaps[ i$1 ]; if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { if ( glFormat !== null ) { state.compressedTexImage2D( 3553, i$1, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); } } else { state.texImage2D( 3553, i$1, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } textureProperties.__maxMipLevel = mipmaps.length - 1; } else if ( texture.isDataTexture2DArray ) { state.texImage3D( 35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); textureProperties.__maxMipLevel = 0; } else if ( texture.isDataTexture3D ) { state.texImage3D( 32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); textureProperties.__maxMipLevel = 0; } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && supportsMips ) { for ( var i$2 = 0, il$2 = mipmaps.length; i$2 < il$2; i$2 ++ ) { mipmap = mipmaps[ i$2 ]; state.texImage2D( 3553, i$2, glInternalFormat, glFormat, glType, mipmap ); } texture.generateMipmaps = false; textureProperties.__maxMipLevel = mipmaps.length - 1; } else { state.texImage2D( 3553, 0, glInternalFormat, glFormat, glType, image ); textureProperties.__maxMipLevel = 0; } } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( textureType, texture, image.width, image.height ); } textureProperties.__version = texture.version; if ( texture.onUpdate ) { texture.onUpdate( texture ); } } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) { var glFormat = utils.convert( renderTarget.texture.format ); var glType = utils.convert( renderTarget.texture.type ); var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType ); state.texImage2D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); _gl.bindFramebuffer( 36160, framebuffer ); _gl.framebufferTexture2D( 36160, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 ); _gl.bindFramebuffer( 36160, null ); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) { _gl.bindRenderbuffer( 36161, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { var glInternalFormat = 33189; if ( isMultisample ) { var depthTexture = renderTarget.depthTexture; if ( depthTexture && depthTexture.isDepthTexture ) { if ( depthTexture.type === FloatType ) { glInternalFormat = 36012; } else if ( depthTexture.type === UnsignedIntType ) { glInternalFormat = 33190; } } var samples = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height ); } _gl.framebufferRenderbuffer( 36160, 36096, 36161, renderbuffer ); } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { if ( isMultisample ) { var samples$1 = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( 36161, samples$1, 35056, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( 36161, 34041, renderTarget.width, renderTarget.height ); } _gl.framebufferRenderbuffer( 36160, 33306, 36161, renderbuffer ); } else { var glFormat = utils.convert( renderTarget.texture.format ); var glType = utils.convert( renderTarget.texture.type ); var glInternalFormat$1 = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType ); if ( isMultisample ) { var samples$2 = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( 36161, samples$2, glInternalFormat$1, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( 36161, glInternalFormat$1, renderTarget.width, renderTarget.height ); } } _gl.bindRenderbuffer( 36161, null ); } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture( framebuffer, renderTarget ) { var isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget ); if ( isCube ) { throw new Error( 'Depth Texture with cube render targets is not supported' ); } _gl.bindFramebuffer( 36160, framebuffer ); if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) { throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' ); } // upload an empty depth texture with framebuffer size if ( ! properties.get( renderTarget.depthTexture ).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) { renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true; } setTexture2D( renderTarget.depthTexture, 0 ); var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture; if ( renderTarget.depthTexture.format === DepthFormat ) { _gl.framebufferTexture2D( 36160, 36096, 3553, webglDepthTexture, 0 ); } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) { _gl.framebufferTexture2D( 36160, 33306, 3553, webglDepthTexture, 0 ); } else { throw new Error( 'Unknown depthTexture format' ); } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); if ( renderTarget.depthTexture ) { if ( isCube ) { throw new Error( 'target.depthTexture not supported in Cube render targets' ); } setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget ); } else { if ( isCube ) { renderTargetProperties.__webglDepthbuffer = []; for ( var i = 0; i < 6; i ++ ) { _gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer[ i ] ); renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false ); } } else { _gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer ); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false ); } } _gl.bindFramebuffer( 36160, null ); } // Set up GL resources for the render target function setupRenderTarget( renderTarget ) { var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture ); renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); textureProperties.__webglTexture = _gl.createTexture(); info.memory.textures ++; var isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); var isMultisample = ( renderTarget.isWebGLMultisampleRenderTarget === true ); var supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858 if ( isWebGL2 && renderTarget.texture.format === RGBFormat && ( renderTarget.texture.type === FloatType || renderTarget.texture.type === HalfFloatType ) ) { renderTarget.texture.format = RGBAFormat; console.warn( 'THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.' ); } // Setup framebuffer if ( isCube ) { renderTargetProperties.__webglFramebuffer = []; for ( var i = 0; i < 6; i ++ ) { renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); if ( isMultisample ) { if ( isWebGL2 ) { renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer(); _gl.bindRenderbuffer( 36161, renderTargetProperties.__webglColorRenderbuffer ); var glFormat = utils.convert( renderTarget.texture.format ); var glType = utils.convert( renderTarget.texture.type ); var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType ); var samples = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); _gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); _gl.framebufferRenderbuffer( 36160, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer ); _gl.bindRenderbuffer( 36161, null ); if ( renderTarget.depthBuffer ) { renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true ); } _gl.bindFramebuffer( 36160, null ); } else { console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' ); } } } // Setup color buffer if ( isCube ) { state.bindTexture( 34067, textureProperties.__webglTexture ); setTextureParameters( 34067, renderTarget.texture, supportsMips ); for ( var i$1 = 0; i$1 < 6; i$1 ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i$1 ], renderTarget, 36064, 34069 + i$1 ); } if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) { generateMipmap( 34067, renderTarget.texture, renderTarget.width, renderTarget.height ); } state.bindTexture( 34067, null ); } else { state.bindTexture( 3553, textureProperties.__webglTexture ); setTextureParameters( 3553, renderTarget.texture, supportsMips ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, 36064, 3553 ); if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) { generateMipmap( 3553, renderTarget.texture, renderTarget.width, renderTarget.height ); } state.bindTexture( 3553, null ); } // Setup depth and stencil buffers if ( renderTarget.depthBuffer ) { setupDepthRenderbuffer( renderTarget ); } } function updateRenderTargetMipmap( renderTarget ) { var texture = renderTarget.texture; var supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2; if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { var target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553; var webglTexture = properties.get( texture ).__webglTexture; state.bindTexture( target, webglTexture ); generateMipmap( target, texture, renderTarget.width, renderTarget.height ); state.bindTexture( target, null ); } } function updateMultisampleRenderTarget( renderTarget ) { if ( renderTarget.isWebGLMultisampleRenderTarget ) { if ( isWebGL2 ) { var renderTargetProperties = properties.get( renderTarget ); _gl.bindFramebuffer( 36008, renderTargetProperties.__webglMultisampledFramebuffer ); _gl.bindFramebuffer( 36009, renderTargetProperties.__webglFramebuffer ); var width = renderTarget.width; var height = renderTarget.height; var mask = 16384; if ( renderTarget.depthBuffer ) { mask |= 256; } if ( renderTarget.stencilBuffer ) { mask |= 1024; } _gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, 9728 ); _gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); // see #18905 } else { console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' ); } } } function getRenderTargetSamples( renderTarget ) { return ( isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ) ? Math.min( maxSamples, renderTarget.samples ) : 0; } function updateVideoTexture( texture ) { var frame = info.render.frame; // Check the last frame we updated the VideoTexture if ( _videoTextures.get( texture ) !== frame ) { _videoTextures.set( texture, frame ); texture.update(); } } // backwards compatibility var warnedTexture2D = false; var warnedTextureCube = false; function safeSetTexture2D( texture, slot ) { if ( texture && texture.isWebGLRenderTarget ) { if ( warnedTexture2D === false ) { console.warn( "THREE.WebGLTextures.safeSetTexture2D: don't use render targets as textures. Use their .texture property instead." ); warnedTexture2D = true; } texture = texture.texture; } setTexture2D( texture, slot ); } function safeSetTextureCube( texture, slot ) { if ( texture && texture.isWebGLCubeRenderTarget ) { if ( warnedTextureCube === false ) { console.warn( "THREE.WebGLTextures.safeSetTextureCube: don't use cube render targets as textures. Use their .texture property instead." ); warnedTextureCube = true; } texture = texture.texture; } // currently relying on the fact that WebGLCubeRenderTarget.texture is a Texture and NOT a CubeTexture // TODO: unify these code paths if ( ( texture && texture.isCubeTexture ) || ( Array.isArray( texture.image ) && texture.image.length === 6 ) ) { // CompressedTexture can have Array in image :/ // this function alone should take care of cube textures setTextureCube( texture, slot ); } else { // assumed: texture property of THREE.WebGLCubeRenderTarget setTextureCubeDynamic( texture, slot ); } } // this.allocateTextureUnit = allocateTextureUnit; this.resetTextureUnits = resetTextureUnits; this.setTexture2D = setTexture2D; this.setTexture2DArray = setTexture2DArray; this.setTexture3D = setTexture3D; this.setTextureCube = setTextureCube; this.setTextureCubeDynamic = setTextureCubeDynamic; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap; this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; this.safeSetTexture2D = safeSetTexture2D; this.safeSetTextureCube = safeSetTextureCube; } function WebGLUtils( gl, extensions, capabilities ) { var isWebGL2 = capabilities.isWebGL2; function convert( p ) { var extension; if ( p === UnsignedByteType ) { return 5121; } if ( p === UnsignedShort4444Type ) { return 32819; } if ( p === UnsignedShort5551Type ) { return 32820; } if ( p === UnsignedShort565Type ) { return 33635; } if ( p === ByteType ) { return 5120; } if ( p === ShortType ) { return 5122; } if ( p === UnsignedShortType ) { return 5123; } if ( p === IntType ) { return 5124; } if ( p === UnsignedIntType ) { return 5125; } if ( p === FloatType ) { return 5126; } if ( p === HalfFloatType ) { if ( isWebGL2 ) { return 5131; } extension = extensions.get( 'OES_texture_half_float' ); if ( extension !== null ) { return extension.HALF_FLOAT_OES; } else { return null; } } if ( p === AlphaFormat ) { return 6406; } if ( p === RGBFormat ) { return 6407; } if ( p === RGBAFormat ) { return 6408; } if ( p === LuminanceFormat ) { return 6409; } if ( p === LuminanceAlphaFormat ) { return 6410; } if ( p === DepthFormat ) { return 6402; } if ( p === DepthStencilFormat ) { return 34041; } if ( p === RedFormat ) { return 6403; } // WebGL2 formats. if ( p === RedIntegerFormat ) { return 36244; } if ( p === RGFormat ) { return 33319; } if ( p === RGIntegerFormat ) { return 33320; } if ( p === RGBIntegerFormat ) { return 36248; } if ( p === RGBAIntegerFormat ) { return 36249; } if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) { return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; } if ( p === RGBA_S3TC_DXT1_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; } if ( p === RGBA_S3TC_DXT3_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; } if ( p === RGBA_S3TC_DXT5_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } } else { return null; } } if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); if ( extension !== null ) { if ( p === RGB_PVRTC_4BPPV1_Format ) { return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; } if ( p === RGB_PVRTC_2BPPV1_Format ) { return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; } if ( p === RGBA_PVRTC_4BPPV1_Format ) { return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; } if ( p === RGBA_PVRTC_2BPPV1_Format ) { return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } } else { return null; } } if ( p === RGB_ETC1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc1' ); if ( extension !== null ) { return extension.COMPRESSED_RGB_ETC1_WEBGL; } else { return null; } } if ( p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc' ); if ( extension !== null ) { if ( p === RGB_ETC2_Format ) { return extension.COMPRESSED_RGB8_ETC2; } if ( p === RGBA_ETC2_EAC_Format ) { return extension.COMPRESSED_RGBA8_ETC2_EAC; } } } if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_astc' ); if ( extension !== null ) { // TODO Complete? return p; } else { return null; } } if ( p === RGBA_BPTC_Format ) { extension = extensions.get( 'EXT_texture_compression_bptc' ); if ( extension !== null ) { // TODO Complete? return p; } else { return null; } } if ( p === UnsignedInt248Type ) { if ( isWebGL2 ) { return 34042; } extension = extensions.get( 'WEBGL_depth_texture' ); if ( extension !== null ) { return extension.UNSIGNED_INT_24_8_WEBGL; } else { return null; } } } return { convert: convert }; } function ArrayCamera( array ) { PerspectiveCamera.call( this ); this.cameras = array || []; } ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), { constructor: ArrayCamera, isArrayCamera: true } ); function Group() { Object3D.call( this ); this.type = 'Group'; } Group.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Group, isGroup: true } ); function WebXRController() { this._targetRay = null; this._grip = null; this._hand = null; } Object.assign( WebXRController.prototype, { constructor: WebXRController, getHandSpace: function () { if ( this._hand === null ) { this._hand = new Group(); this._hand.matrixAutoUpdate = false; this._hand.visible = false; this._hand.joints = []; this._hand.inputState = { pinching: false }; if ( window.XRHand ) { for ( var i = 0; i <= window.XRHand.LITTLE_PHALANX_TIP; i ++ ) { // The transform of this joint will be updated with the joint pose on each frame var joint = new Group(); joint.matrixAutoUpdate = false; joint.visible = false; this._hand.joints.push( joint ); // ?? this._hand.add( joint ); } } } return this._hand; }, getTargetRaySpace: function () { if ( this._targetRay === null ) { this._targetRay = new Group(); this._targetRay.matrixAutoUpdate = false; this._targetRay.visible = false; } return this._targetRay; }, getGripSpace: function () { if ( this._grip === null ) { this._grip = new Group(); this._grip.matrixAutoUpdate = false; this._grip.visible = false; } return this._grip; }, dispatchEvent: function ( event ) { if ( this._targetRay !== null ) { this._targetRay.dispatchEvent( event ); } if ( this._grip !== null ) { this._grip.dispatchEvent( event ); } if ( this._hand !== null ) { this._hand.dispatchEvent( event ); } return this; }, disconnect: function ( inputSource ) { this.dispatchEvent( { type: 'disconnected', data: inputSource } ); if ( this._targetRay !== null ) { this._targetRay.visible = false; } if ( this._grip !== null ) { this._grip.visible = false; } if ( this._hand !== null ) { this._hand.visible = false; } return this; }, update: function ( inputSource, frame, referenceSpace ) { var inputPose = null; var gripPose = null; var handPose = null; var targetRay = this._targetRay; var grip = this._grip; var hand = this._hand; if ( inputSource ) { if ( hand && inputSource.hand ) { handPose = true; for ( var i = 0; i <= window.XRHand.LITTLE_PHALANX_TIP; i ++ ) { if ( inputSource.hand[ i ] ) { // Update the joints groups with the XRJoint poses var jointPose = frame.getJointPose( inputSource.hand[ i ], referenceSpace ); var joint = hand.joints[ i ]; if ( jointPose !== null ) { joint.matrix.fromArray( jointPose.transform.matrix ); joint.matrix.decompose( joint.position, joint.rotation, joint.scale ); joint.jointRadius = jointPose.radius; } joint.visible = jointPose !== null; // Custom events // Check pinch var indexTip = hand.joints[ window.XRHand.INDEX_PHALANX_TIP ]; var thumbTip = hand.joints[ window.XRHand.THUMB_PHALANX_TIP ]; var distance = indexTip.position.distanceTo( thumbTip.position ); var distanceToPinch = 0.02; var threshold = 0.005; if ( hand.inputState.pinching && distance > distanceToPinch + threshold ) { hand.inputState.pinching = false; this.dispatchEvent( { type: "pinchend", handedness: inputSource.handedness, target: this } ); } else if ( ! hand.inputState.pinching && distance <= distanceToPinch - threshold ) { hand.inputState.pinching = true; this.dispatchEvent( { type: "pinchstart", handedness: inputSource.handedness, target: this } ); } } } } else { if ( targetRay !== null ) { inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace ); if ( inputPose !== null ) { targetRay.matrix.fromArray( inputPose.transform.matrix ); targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale ); } } if ( grip !== null && inputSource.gripSpace ) { gripPose = frame.getPose( inputSource.gripSpace, referenceSpace ); if ( gripPose !== null ) { grip.matrix.fromArray( gripPose.transform.matrix ); grip.matrix.decompose( grip.position, grip.rotation, grip.scale ); } } } } if ( targetRay !== null ) { targetRay.visible = ( inputPose !== null ); } if ( grip !== null ) { grip.visible = ( gripPose !== null ); } if ( hand !== null ) { hand.visible = ( handPose !== null ); } return this; } } ); function WebXRManager( renderer, gl ) { var scope = this; var session = null; var framebufferScaleFactor = 1.0; var referenceSpace = null; var referenceSpaceType = 'local-floor'; var pose = null; var controllers = []; var inputSourcesMap = new Map(); // var cameraL = new PerspectiveCamera(); cameraL.layers.enable( 1 ); cameraL.viewport = new Vector4(); var cameraR = new PerspectiveCamera(); cameraR.layers.enable( 2 ); cameraR.viewport = new Vector4(); var cameras = [ cameraL, cameraR ]; var cameraVR = new ArrayCamera(); cameraVR.layers.enable( 1 ); cameraVR.layers.enable( 2 ); var _currentDepthNear = null; var _currentDepthFar = null; // this.enabled = false; this.isPresenting = false; this.getController = function ( index ) { var controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getTargetRaySpace(); }; this.getControllerGrip = function ( index ) { var controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getGripSpace(); }; this.getHand = function ( index ) { var controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getHandSpace(); }; // function onSessionEvent( event ) { var controller = inputSourcesMap.get( event.inputSource ); if ( controller ) { controller.dispatchEvent( { type: event.type } ); } } function onSessionEnd() { inputSourcesMap.forEach( function ( controller, inputSource ) { controller.disconnect( inputSource ); } ); inputSourcesMap.clear(); // renderer.setFramebuffer( null ); renderer.setRenderTarget( renderer.getRenderTarget() ); // Hack #15830 animation.stop(); scope.isPresenting = false; scope.dispatchEvent( { type: 'sessionend' } ); } function onRequestReferenceSpace( value ) { referenceSpace = value; animation.setContext( session ); animation.start(); scope.isPresenting = true; scope.dispatchEvent( { type: 'sessionstart' } ); } this.setFramebufferScaleFactor = function ( value ) { framebufferScaleFactor = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' ); } }; this.setReferenceSpaceType = function ( value ) { referenceSpaceType = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' ); } }; this.getReferenceSpace = function () { return referenceSpace; }; this.getSession = function () { return session; }; this.setSession = function ( value ) { session = value; if ( session !== null ) { session.addEventListener( 'select', onSessionEvent ); session.addEventListener( 'selectstart', onSessionEvent ); session.addEventListener( 'selectend', onSessionEvent ); session.addEventListener( 'squeeze', onSessionEvent ); session.addEventListener( 'squeezestart', onSessionEvent ); session.addEventListener( 'squeezeend', onSessionEvent ); session.addEventListener( 'end', onSessionEnd ); var attributes = gl.getContextAttributes(); if ( attributes.xrCompatible !== true ) { gl.makeXRCompatible(); } var layerInit = { antialias: attributes.antialias, alpha: attributes.alpha, depth: attributes.depth, stencil: attributes.stencil, framebufferScaleFactor: framebufferScaleFactor }; // eslint-disable-next-line no-undef var baseLayer = new XRWebGLLayer( session, gl, layerInit ); session.updateRenderState( { baseLayer: baseLayer } ); session.requestReferenceSpace( referenceSpaceType ).then( onRequestReferenceSpace ); // session.addEventListener( 'inputsourceschange', updateInputSources ); } }; function updateInputSources( event ) { var inputSources = session.inputSources; // Assign inputSources to available controllers for ( var i = 0; i < controllers.length; i ++ ) { inputSourcesMap.set( inputSources[ i ], controllers[ i ] ); } // Notify disconnected for ( var i$1 = 0; i$1 < event.removed.length; i$1 ++ ) { var inputSource = event.removed[ i$1 ]; var controller = inputSourcesMap.get( inputSource ); if ( controller ) { controller.dispatchEvent( { type: 'disconnected', data: inputSource } ); inputSourcesMap.delete( inputSource ); } } // Notify connected for ( var i$2 = 0; i$2 < event.added.length; i$2 ++ ) { var inputSource$1 = event.added[ i$2 ]; var controller$1 = inputSourcesMap.get( inputSource$1 ); if ( controller$1 ) { controller$1.dispatchEvent( { type: 'connected', data: inputSource$1 } ); } } } // var cameraLPos = new Vector3(); var cameraRPos = new Vector3(); /** * Assumes 2 cameras that are parallel and share an X-axis, and that * the cameras' projection and world matrices have already been set. * And that near and far planes are identical for both cameras. * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 */ function setProjectionFromUnion( camera, cameraL, cameraR ) { cameraLPos.setFromMatrixPosition( cameraL.matrixWorld ); cameraRPos.setFromMatrixPosition( cameraR.matrixWorld ); var ipd = cameraLPos.distanceTo( cameraRPos ); var projL = cameraL.projectionMatrix.elements; var projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and // most likely identical top and bottom frustum extents. // Use the left camera for these values. var near = projL[ 14 ] / ( projL[ 10 ] - 1 ); var far = projL[ 14 ] / ( projL[ 10 ] + 1 ); var topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ]; var bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ]; var leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ]; var rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ]; var left = near * leftFov; var right = near * rightFov; // Calculate the new camera's position offset from the // left camera. xOffset should be roughly half `ipd`. var zOffset = ipd / ( - leftFov + rightFov ); var xOffset = zOffset * - leftFov; // TODO: Better way to apply this offset? cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale ); camera.translateX( xOffset ); camera.translateZ( zOffset ); camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale ); camera.matrixWorldInverse.getInverse( camera.matrixWorld ); // Find the union of the frustum values of the cameras and scale // the values so that the near plane's position does not change in world space, // although must now be relative to the new union camera. var near2 = near + zOffset; var far2 = far + zOffset; var left2 = left - xOffset; var right2 = right + ( ipd - xOffset ); var top2 = topFov * far / far2 * near2; var bottom2 = bottomFov * far / far2 * near2; camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 ); } function updateCamera( camera, parent ) { if ( parent === null ) { camera.matrixWorld.copy( camera.matrix ); } else { camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix ); } camera.matrixWorldInverse.getInverse( camera.matrixWorld ); } this.getCamera = function ( camera ) { cameraVR.near = cameraR.near = cameraL.near = camera.near; cameraVR.far = cameraR.far = cameraL.far = camera.far; if ( _currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far ) { // Note that the new renderState won't apply until the next frame. See #18320 session.updateRenderState( { depthNear: cameraVR.near, depthFar: cameraVR.far } ); _currentDepthNear = cameraVR.near; _currentDepthFar = cameraVR.far; } var parent = camera.parent; var cameras = cameraVR.cameras; updateCamera( cameraVR, parent ); for ( var i = 0; i < cameras.length; i ++ ) { updateCamera( cameras[ i ], parent ); } // update camera and its children camera.matrixWorld.copy( cameraVR.matrixWorld ); var children = camera.children; for ( var i$1 = 0, l = children.length; i$1 < l; i$1 ++ ) { children[ i$1 ].updateMatrixWorld( true ); } // update projection matrix for proper view frustum culling if ( cameras.length === 2 ) { setProjectionFromUnion( cameraVR, cameraL, cameraR ); } else { // assume single camera setup (AR) cameraVR.projectionMatrix.copy( cameraL.projectionMatrix ); } return cameraVR; }; // Animation Loop var onAnimationFrameCallback = null; function onAnimationFrame( time, frame ) { pose = frame.getViewerPose( referenceSpace ); if ( pose !== null ) { var views = pose.views; var baseLayer = session.renderState.baseLayer; renderer.setFramebuffer( baseLayer.framebuffer ); var cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list if ( views.length !== cameraVR.cameras.length ) { cameraVR.cameras.length = 0; cameraVRNeedsUpdate = true; } for ( var i = 0; i < views.length; i ++ ) { var view = views[ i ]; var viewport = baseLayer.getViewport( view ); var camera = cameras[ i ]; camera.matrix.fromArray( view.transform.matrix ); camera.projectionMatrix.fromArray( view.projectionMatrix ); camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height ); if ( i === 0 ) { cameraVR.matrix.copy( camera.matrix ); } if ( cameraVRNeedsUpdate === true ) { cameraVR.cameras.push( camera ); } } } // var inputSources = session.inputSources; for ( var i$1 = 0; i$1 < controllers.length; i$1 ++ ) { var controller = controllers[ i$1 ]; var inputSource = inputSources[ i$1 ]; controller.update( inputSource, frame, referenceSpace ); } if ( onAnimationFrameCallback ) { onAnimationFrameCallback( time, frame ); } } var animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; }; this.dispose = function () {}; } Object.assign( WebXRManager.prototype, EventDispatcher.prototype ); function WebGLMaterials( properties ) { function refreshFogUniforms( uniforms, fog ) { uniforms.fogColor.value.copy( fog.color ); if ( fog.isFog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog.isFogExp2 ) { uniforms.fogDensity.value = fog.density; } } function refreshMaterialUniforms( uniforms, material, pixelRatio, height ) { if ( material.isMeshBasicMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshLambertMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsLambert( uniforms, material ); } else if ( material.isMeshToonMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsToon( uniforms, material ); } else if ( material.isMeshPhongMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsPhong( uniforms, material ); } else if ( material.isMeshStandardMaterial ) { refreshUniformsCommon( uniforms, material ); if ( material.isMeshPhysicalMaterial ) { refreshUniformsPhysical( uniforms, material ); } else { refreshUniformsStandard( uniforms, material ); } } else if ( material.isMeshMatcapMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsMatcap( uniforms, material ); } else if ( material.isMeshDepthMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsDepth( uniforms, material ); } else if ( material.isMeshDistanceMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsDistance( uniforms, material ); } else if ( material.isMeshNormalMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsNormal( uniforms, material ); } else if ( material.isLineBasicMaterial ) { refreshUniformsLine( uniforms, material ); if ( material.isLineDashedMaterial ) { refreshUniformsDash( uniforms, material ); } } else if ( material.isPointsMaterial ) { refreshUniformsPoints( uniforms, material, pixelRatio, height ); } else if ( material.isSpriteMaterial ) { refreshUniformsSprites( uniforms, material ); } else if ( material.isShadowMaterial ) { uniforms.color.value.copy( material.color ); uniforms.opacity.value = material.opacity; } else if ( material.isShaderMaterial ) { material.uniformsNeedUpdate = false; // #15581 } } function refreshUniformsCommon( uniforms, material ) { uniforms.opacity.value = material.opacity; if ( material.color ) { uniforms.diffuse.value.copy( material.color ); } if ( material.emissive ) { uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); } if ( material.map ) { uniforms.map.value = material.map; } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; } if ( material.specularMap ) { uniforms.specularMap.value = material.specularMap; } var envMap = properties.get( material ).envMap; if ( envMap ) { uniforms.envMap.value = envMap; uniforms.flipEnvMap.value = envMap.isCubeTexture ? - 1 : 1; uniforms.reflectivity.value = material.reflectivity; uniforms.refractionRatio.value = material.refractionRatio; var maxMipLevel = properties.get( envMap ).__maxMipLevel; if ( maxMipLevel !== undefined ) { uniforms.maxMipLevel.value = maxMipLevel; } } if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; } if ( material.aoMap ) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. displacementMap map // 4. normal map // 5. bump map // 6. roughnessMap map // 7. metalnessMap map // 8. alphaMap map // 9. emissiveMap map // 10. clearcoat map // 11. clearcoat normal map // 12. clearcoat roughnessMap map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.roughnessMap ) { uvScaleMap = material.roughnessMap; } else if ( material.metalnessMap ) { uvScaleMap = material.metalnessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } else if ( material.clearcoatMap ) { uvScaleMap = material.clearcoatMap; } else if ( material.clearcoatNormalMap ) { uvScaleMap = material.clearcoatNormalMap; } else if ( material.clearcoatRoughnessMap ) { uvScaleMap = material.clearcoatRoughnessMap; } if ( uvScaleMap !== undefined ) { // backwards compatibility if ( uvScaleMap.isWebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } // uv repeat and offset setting priorities for uv2 // 1. ao map // 2. light map var uv2ScaleMap; if ( material.aoMap ) { uv2ScaleMap = material.aoMap; } else if ( material.lightMap ) { uv2ScaleMap = material.lightMap; } if ( uv2ScaleMap !== undefined ) { // backwards compatibility if ( uv2ScaleMap.isWebGLRenderTarget ) { uv2ScaleMap = uv2ScaleMap.texture; } if ( uv2ScaleMap.matrixAutoUpdate === true ) { uv2ScaleMap.updateMatrix(); } uniforms.uv2Transform.value.copy( uv2ScaleMap.matrix ); } } function refreshUniformsLine( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; } function refreshUniformsDash( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints( uniforms, material, pixelRatio, height ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * pixelRatio; uniforms.scale.value = height * 0.5; if ( material.map ) { uniforms.map.value = material.map; } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; } // uv repeat and offset setting priorities // 1. color map // 2. alpha map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } if ( uvScaleMap !== undefined ) { if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } } function refreshUniformsSprites( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.rotation.value = material.rotation; if ( material.map ) { uniforms.map.value = material.map; } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; } // uv repeat and offset setting priorities // 1. color map // 2. alpha map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } if ( uvScaleMap !== undefined ) { if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } } function refreshUniformsLambert( uniforms, material ) { if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } } function refreshUniformsPhong( uniforms, material ) { uniforms.specular.value.copy( material.specular ); uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsToon( uniforms, material ) { if ( material.gradientMap ) { uniforms.gradientMap.value = material.gradientMap; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsStandard( uniforms, material ) { uniforms.roughness.value = material.roughness; uniforms.metalness.value = material.metalness; if ( material.roughnessMap ) { uniforms.roughnessMap.value = material.roughnessMap; } if ( material.metalnessMap ) { uniforms.metalnessMap.value = material.metalnessMap; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } var envMap = properties.get( material ).envMap; if ( envMap ) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } function refreshUniformsPhysical( uniforms, material ) { refreshUniformsStandard( uniforms, material ); uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common uniforms.clearcoat.value = material.clearcoat; uniforms.clearcoatRoughness.value = material.clearcoatRoughness; if ( material.sheen ) { uniforms.sheen.value.copy( material.sheen ); } if ( material.clearcoatMap ) { uniforms.clearcoatMap.value = material.clearcoatMap; } if ( material.clearcoatRoughnessMap ) { uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; } if ( material.clearcoatNormalMap ) { uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale ); uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; if ( material.side === BackSide ) { uniforms.clearcoatNormalScale.value.negate(); } } uniforms.transmission.value = material.transmission; if ( material.transmissionMap ) { uniforms.transmissionMap.value = material.transmissionMap; } } function refreshUniformsMatcap( uniforms, material ) { if ( material.matcap ) { uniforms.matcap.value = material.matcap; } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsDepth( uniforms, material ) { if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } function refreshUniformsDistance( uniforms, material ) { if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } uniforms.referencePosition.value.copy( material.referencePosition ); uniforms.nearDistance.value = material.nearDistance; uniforms.farDistance.value = material.farDistance; } function refreshUniformsNormal( uniforms, material ) { if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } } return { refreshFogUniforms: refreshFogUniforms, refreshMaterialUniforms: refreshMaterialUniforms }; } function WebGLRenderer( parameters ) { parameters = parameters || {}; var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ), _context = parameters.context !== undefined ? parameters.context : null, _alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default', _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false; var currentRenderList = null; var currentRenderState = null; // public properties this.domElement = _canvas; // Debug configuration container this.debug = { /** * Enables error checking and reporting when shader programs are being compiled * @type {boolean} */ checkShaderErrors: true }; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // user-defined clipping this.clippingPlanes = []; this.localClippingEnabled = false; // physically based shading this.gammaFactor = 2.0; // for backwards compatibility this.outputEncoding = LinearEncoding; // physical lights this.physicallyCorrectLights = false; // tone mapping this.toneMapping = NoToneMapping; this.toneMappingExposure = 1.0; // morphs this.maxMorphTargets = 8; this.maxMorphNormals = 4; // internal properties var _this = this; var _isContextLost = false; // internal state cache var _framebuffer = null; var _currentActiveCubeFace = 0; var _currentActiveMipmapLevel = 0; var _currentRenderTarget = null; var _currentFramebuffer = null; var _currentMaterialId = - 1; var _currentCamera = null; var _currentArrayCamera = null; var _currentViewport = new Vector4(); var _currentScissor = new Vector4(); var _currentScissorTest = null; // var _width = _canvas.width; var _height = _canvas.height; var _pixelRatio = 1; var _opaqueSort = null; var _transparentSort = null; var _viewport = new Vector4( 0, 0, _width, _height ); var _scissor = new Vector4( 0, 0, _width, _height ); var _scissorTest = false; // frustum var _frustum = new Frustum(); // clipping var _clippingEnabled = false; var _localClippingEnabled = false; // camera matrices cache var _projScreenMatrix = new Matrix4(); var _vector3 = new Vector3(); var _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true }; function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } // initialize var _gl = _context; function getContext( contextNames, contextAttributes ) { for ( var i = 0; i < contextNames.length; i ++ ) { var contextName = contextNames[ i ]; var context = _canvas.getContext( contextName, contextAttributes ); if ( context !== null ) { return context; } } return null; } try { var contextAttributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer, powerPreference: _powerPreference, failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat }; // event listeners must be registered before WebGL context is created, see #12753 _canvas.addEventListener( 'webglcontextlost', onContextLost, false ); _canvas.addEventListener( 'webglcontextrestored', onContextRestore, false ); if ( _gl === null ) { var contextNames = [ 'webgl2', 'webgl', 'experimental-webgl' ]; if ( _this.isWebGL1Renderer === true ) { contextNames.shift(); } _gl = getContext( contextNames, contextAttributes ); if ( _gl === null ) { if ( getContext( contextNames ) ) { throw new Error( 'Error creating WebGL context with your selected attributes.' ); } else { throw new Error( 'Error creating WebGL context.' ); } } } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if ( _gl.getShaderPrecisionFormat === undefined ) { _gl.getShaderPrecisionFormat = function () { return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; }; } } catch ( error ) { console.error( 'THREE.WebGLRenderer: ' + error.message ); throw error; } var extensions, capabilities, state, info; var properties, textures, cubemaps, attributes, geometries, objects; var programCache, materials, renderLists, renderStates, clipping; var background, morphtargets, bufferRenderer, indexedBufferRenderer; var utils, bindingStates; function initGLContext() { extensions = new WebGLExtensions( _gl ); capabilities = new WebGLCapabilities( _gl, extensions, parameters ); if ( capabilities.isWebGL2 === false ) { extensions.get( 'WEBGL_depth_texture' ); extensions.get( 'OES_texture_float' ); extensions.get( 'OES_texture_half_float' ); extensions.get( 'OES_texture_half_float_linear' ); extensions.get( 'OES_standard_derivatives' ); extensions.get( 'OES_element_index_uint' ); extensions.get( 'OES_vertex_array_object' ); extensions.get( 'ANGLE_instanced_arrays' ); } extensions.get( 'OES_texture_float_linear' ); utils = new WebGLUtils( _gl, extensions, capabilities ); state = new WebGLState( _gl, extensions, capabilities ); state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() ); state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() ); info = new WebGLInfo( _gl ); properties = new WebGLProperties(); textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ); cubemaps = new WebGLCubeMaps( _this ); attributes = new WebGLAttributes( _gl, capabilities ); bindingStates = new WebGLBindingStates( _gl, extensions, attributes, capabilities ); geometries = new WebGLGeometries( _gl, attributes, info, bindingStates ); objects = new WebGLObjects( _gl, geometries, attributes, info ); morphtargets = new WebGLMorphtargets( _gl ); clipping = new WebGLClipping( properties ); programCache = new WebGLPrograms( _this, cubemaps, extensions, capabilities, bindingStates, clipping ); materials = new WebGLMaterials( properties ); renderLists = new WebGLRenderLists( properties ); renderStates = new WebGLRenderStates(); background = new WebGLBackground( _this, cubemaps, state, objects, _premultipliedAlpha ); bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities ); indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities ); info.programs = programCache.programs; _this.capabilities = capabilities; _this.extensions = extensions; _this.properties = properties; _this.renderLists = renderLists; _this.state = state; _this.info = info; } initGLContext(); // xr var xr = new WebXRManager( _this, _gl ); this.xr = xr; // shadow map var shadowMap = new WebGLShadowMap( _this, objects, capabilities.maxTextureSize ); this.shadowMap = shadowMap; // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { var extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) { extension.loseContext(); } }; this.forceContextRestore = function () { var extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) { extension.restoreContext(); } }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function ( value ) { if ( value === undefined ) { return; } _pixelRatio = value; this.setSize( _width, _height, false ); }; this.getSize = function ( target ) { if ( target === undefined ) { console.warn( 'WebGLRenderer: .getsize() now requires a Vector2 as an argument' ); target = new Vector2(); } return target.set( _width, _height ); }; this.setSize = function ( width, height, updateStyle ) { if ( xr.isPresenting ) { console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' ); return; } _width = width; _height = height; _canvas.width = Math.floor( width * _pixelRatio ); _canvas.height = Math.floor( height * _pixelRatio ); if ( updateStyle !== false ) { _canvas.style.width = width + 'px'; _canvas.style.height = height + 'px'; } this.setViewport( 0, 0, width, height ); }; this.getDrawingBufferSize = function ( target ) { if ( target === undefined ) { console.warn( 'WebGLRenderer: .getdrawingBufferSize() now requires a Vector2 as an argument' ); target = new Vector2(); } return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor(); }; this.setDrawingBufferSize = function ( width, height, pixelRatio ) { _width = width; _height = height; _pixelRatio = pixelRatio; _canvas.width = Math.floor( width * pixelRatio ); _canvas.height = Math.floor( height * pixelRatio ); this.setViewport( 0, 0, width, height ); }; this.getCurrentViewport = function ( target ) { if ( target === undefined ) { console.warn( 'WebGLRenderer: .getCurrentViewport() now requires a Vector4 as an argument' ); target = new Vector4(); } return target.copy( _currentViewport ); }; this.getViewport = function ( target ) { return target.copy( _viewport ); }; this.setViewport = function ( x, y, width, height ) { if ( x.isVector4 ) { _viewport.set( x.x, x.y, x.z, x.w ); } else { _viewport.set( x, y, width, height ); } state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() ); }; this.getScissor = function ( target ) { return target.copy( _scissor ); }; this.setScissor = function ( x, y, width, height ) { if ( x.isVector4 ) { _scissor.set( x.x, x.y, x.z, x.w ); } else { _scissor.set( x, y, width, height ); } state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() ); }; this.getScissorTest = function () { return _scissorTest; }; this.setScissorTest = function ( boolean ) { state.setScissorTest( _scissorTest = boolean ); }; this.setOpaqueSort = function ( method ) { _opaqueSort = method; }; this.setTransparentSort = function ( method ) { _transparentSort = method; }; // Clearing this.getClearColor = function () { return background.getClearColor(); }; this.setClearColor = function () { background.setClearColor.apply( background, arguments ); }; this.getClearAlpha = function () { return background.getClearAlpha(); }; this.setClearAlpha = function () { background.setClearAlpha.apply( background, arguments ); }; this.clear = function ( color, depth, stencil ) { var bits = 0; if ( color === undefined || color ) { bits |= 16384; } if ( depth === undefined || depth ) { bits |= 256; } if ( stencil === undefined || stencil ) { bits |= 1024; } _gl.clear( bits ); }; this.clearColor = function () { this.clear( true, false, false ); }; this.clearDepth = function () { this.clear( false, true, false ); }; this.clearStencil = function () { this.clear( false, false, true ); }; // this.dispose = function () { _canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); _canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false ); renderLists.dispose(); renderStates.dispose(); properties.dispose(); cubemaps.dispose(); objects.dispose(); bindingStates.dispose(); xr.dispose(); animation.stop(); }; // Events function onContextLost( event ) { event.preventDefault(); console.log( 'THREE.WebGLRenderer: Context Lost.' ); _isContextLost = true; } function onContextRestore( /* event */ ) { console.log( 'THREE.WebGLRenderer: Context Restored.' ); _isContextLost = false; initGLContext(); } function onMaterialDispose( event ) { var material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); } // Buffer deallocation function deallocateMaterial( material ) { releaseMaterialProgramReference( material ); properties.remove( material ); } function releaseMaterialProgramReference( material ) { var programInfo = properties.get( material ).program; if ( programInfo !== undefined ) { programCache.releaseProgram( programInfo ); } } // Buffer rendering function renderObjectImmediate( object, program ) { object.render( function ( object ) { _this.renderBufferImmediate( object, program ); } ); } this.renderBufferImmediate = function ( object, program ) { bindingStates.initAttributes(); var buffers = properties.get( object ); if ( object.hasPositions && ! buffers.position ) { buffers.position = _gl.createBuffer(); } if ( object.hasNormals && ! buffers.normal ) { buffers.normal = _gl.createBuffer(); } if ( object.hasUvs && ! buffers.uv ) { buffers.uv = _gl.createBuffer(); } if ( object.hasColors && ! buffers.color ) { buffers.color = _gl.createBuffer(); } var programAttributes = program.getAttributes(); if ( object.hasPositions ) { _gl.bindBuffer( 34962, buffers.position ); _gl.bufferData( 34962, object.positionArray, 35048 ); bindingStates.enableAttribute( programAttributes.position ); _gl.vertexAttribPointer( programAttributes.position, 3, 5126, false, 0, 0 ); } if ( object.hasNormals ) { _gl.bindBuffer( 34962, buffers.normal ); _gl.bufferData( 34962, object.normalArray, 35048 ); bindingStates.enableAttribute( programAttributes.normal ); _gl.vertexAttribPointer( programAttributes.normal, 3, 5126, false, 0, 0 ); } if ( object.hasUvs ) { _gl.bindBuffer( 34962, buffers.uv ); _gl.bufferData( 34962, object.uvArray, 35048 ); bindingStates.enableAttribute( programAttributes.uv ); _gl.vertexAttribPointer( programAttributes.uv, 2, 5126, false, 0, 0 ); } if ( object.hasColors ) { _gl.bindBuffer( 34962, buffers.color ); _gl.bufferData( 34962, object.colorArray, 35048 ); bindingStates.enableAttribute( programAttributes.color ); _gl.vertexAttribPointer( programAttributes.color, 3, 5126, false, 0, 0 ); } bindingStates.disableUnusedAttributes(); _gl.drawArrays( 4, 0, object.count ); object.count = 0; }; this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) { if ( scene === null ) { scene = _emptyScene; } // renderBufferDirect second parameter used to be fog (could be null) var frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 ); var program = setProgram( camera, scene, material, object ); state.setMaterial( material, frontFaceCW ); // var index = geometry.index; var position = geometry.attributes.position; // if ( index === null ) { if ( position === undefined || position.count === 0 ) { return; } } else if ( index.count === 0 ) { return; } // var rangeFactor = 1; if ( material.wireframe === true ) { index = geometries.getWireframeAttribute( geometry ); rangeFactor = 2; } if ( material.morphTargets || material.morphNormals ) { morphtargets.update( object, geometry, material, program ); } bindingStates.setup( object, material, program, geometry, index ); var attribute; var renderer = bufferRenderer; if ( index !== null ) { attribute = attributes.get( index ); renderer = indexedBufferRenderer; renderer.setIndex( attribute ); } // var dataCount = ( index !== null ) ? index.count : position.count; var rangeStart = geometry.drawRange.start * rangeFactor; var rangeCount = geometry.drawRange.count * rangeFactor; var groupStart = group !== null ? group.start * rangeFactor : 0; var groupCount = group !== null ? group.count * rangeFactor : Infinity; var drawStart = Math.max( rangeStart, groupStart ); var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1; var drawCount = Math.max( 0, drawEnd - drawStart + 1 ); if ( drawCount === 0 ) { return; } // if ( object.isMesh ) { if ( material.wireframe === true ) { state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( 1 ); } else { renderer.setMode( 4 ); } } else if ( object.isLine ) { var lineWidth = material.linewidth; if ( lineWidth === undefined ) { lineWidth = 1; } // Not using Line*Material state.setLineWidth( lineWidth * getTargetPixelRatio() ); if ( object.isLineSegments ) { renderer.setMode( 1 ); } else if ( object.isLineLoop ) { renderer.setMode( 2 ); } else { renderer.setMode( 3 ); } } else if ( object.isPoints ) { renderer.setMode( 0 ); } else if ( object.isSprite ) { renderer.setMode( 4 ); } if ( object.isInstancedMesh ) { renderer.renderInstances( drawStart, drawCount, object.count ); } else if ( geometry.isInstancedBufferGeometry ) { var instanceCount = Math.min( geometry.instanceCount, geometry._maxInstanceCount ); renderer.renderInstances( drawStart, drawCount, instanceCount ); } else { renderer.render( drawStart, drawCount ); } }; // Compile this.compile = function ( scene, camera ) { currentRenderState = renderStates.get( scene, camera ); currentRenderState.init(); scene.traverse( function ( object ) { if ( object.isLight ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } } ); currentRenderState.setupLights( camera ); var compiled = new WeakMap(); scene.traverse( function ( object ) { var material = object.material; if ( material ) { if ( Array.isArray( material ) ) { for ( var i = 0; i < material.length; i ++ ) { var material2 = material[ i ]; if ( compiled.has( material2 ) === false ) { initMaterial( material2, scene, object ); compiled.set( material2 ); } } } else if ( compiled.has( material ) === false ) { initMaterial( material, scene, object ); compiled.set( material ); } } } ); }; // Animation Loop var onAnimationFrameCallback = null; function onAnimationFrame( time ) { if ( xr.isPresenting ) { return; } if ( onAnimationFrameCallback ) { onAnimationFrameCallback( time ); } } var animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); if ( typeof window !== 'undefined' ) { animation.setContext( window ); } this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; xr.setAnimationLoop( callback ); ( callback === null ) ? animation.stop() : animation.start(); }; // Rendering this.render = function ( scene, camera ) { var renderTarget, forceClear; if ( arguments[ 2 ] !== undefined ) { console.warn( 'THREE.WebGLRenderer.render(): the renderTarget argument has been removed. Use .setRenderTarget() instead.' ); renderTarget = arguments[ 2 ]; } if ( arguments[ 3 ] !== undefined ) { console.warn( 'THREE.WebGLRenderer.render(): the forceClear argument has been removed. Use .clear() instead.' ); forceClear = arguments[ 3 ]; } if ( camera !== undefined && camera.isCamera !== true ) { console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return; } if ( _isContextLost === true ) { return; } // reset caching for this frame bindingStates.resetDefaultState(); _currentMaterialId = - 1; _currentCamera = null; // update scene graph if ( scene.autoUpdate === true ) { scene.updateMatrixWorld(); } // update camera matrices and frustum if ( camera.parent === null ) { camera.updateMatrixWorld(); } if ( xr.enabled === true && xr.isPresenting === true ) { camera = xr.getCamera( camera ); } // if ( scene.isScene === true ) { scene.onBeforeRender( _this, scene, camera, renderTarget || _currentRenderTarget ); } currentRenderState = renderStates.get( scene, camera ); currentRenderState.init(); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromProjectionMatrix( _projScreenMatrix ); _localClippingEnabled = this.localClippingEnabled; _clippingEnabled = clipping.init( this.clippingPlanes, _localClippingEnabled, camera ); currentRenderList = renderLists.get( scene, camera ); currentRenderList.init(); projectObject( scene, camera, 0, _this.sortObjects ); currentRenderList.finish(); if ( _this.sortObjects === true ) { currentRenderList.sort( _opaqueSort, _transparentSort ); } // if ( _clippingEnabled === true ) { clipping.beginShadows(); } var shadowsArray = currentRenderState.state.shadowsArray; shadowMap.render( shadowsArray, scene, camera ); currentRenderState.setupLights( camera ); if ( _clippingEnabled === true ) { clipping.endShadows(); } // if ( this.info.autoReset === true ) { this.info.reset(); } if ( renderTarget !== undefined ) { this.setRenderTarget( renderTarget ); } // background.render( currentRenderList, scene, camera, forceClear ); // render scene var opaqueObjects = currentRenderList.opaque; var transparentObjects = currentRenderList.transparent; if ( opaqueObjects.length > 0 ) { renderObjects( opaqueObjects, scene, camera ); } if ( transparentObjects.length > 0 ) { renderObjects( transparentObjects, scene, camera ); } // if ( scene.isScene === true ) { scene.onAfterRender( _this, scene, camera ); } // if ( _currentRenderTarget !== null ) { // Generate mipmap if we're using any kind of mipmap filtering textures.updateRenderTargetMipmap( _currentRenderTarget ); // resolve multisample renderbuffers to a single-sample texture if necessary textures.updateMultisampleRenderTarget( _currentRenderTarget ); } // Ensure depth buffer writing is enabled so it can be cleared on next render state.buffers.depth.setTest( true ); state.buffers.depth.setMask( true ); state.buffers.color.setMask( true ); state.setPolygonOffset( false ); // _gl.finish(); currentRenderList = null; currentRenderState = null; }; function projectObject( object, camera, groupOrder, sortObjects ) { if ( object.visible === false ) { return; } var visible = object.layers.test( camera.layers ); if ( visible ) { if ( object.isGroup ) { groupOrder = object.renderOrder; } else if ( object.isLOD ) { if ( object.autoUpdate === true ) { object.update( camera ); } } else if ( object.isLight ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } else if ( object.isSprite ) { if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } var geometry = objects.update( object ); var material = object.material; if ( material.visible ) { currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null ); } } } else if ( object.isImmediateRenderObject ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } currentRenderList.push( object, null, object.material, groupOrder, _vector3.z, null ); } else if ( object.isMesh || object.isLine || object.isPoints ) { if ( object.isSkinnedMesh ) { // update skeleton only once in a frame if ( object.skeleton.frame !== info.render.frame ) { object.skeleton.update(); object.skeleton.frame = info.render.frame; } } if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } var geometry$1 = objects.update( object ); var material$1 = object.material; if ( Array.isArray( material$1 ) ) { var groups = geometry$1.groups; for ( var i = 0, l = groups.length; i < l; i ++ ) { var group = groups[ i ]; var groupMaterial = material$1[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { currentRenderList.push( object, geometry$1, groupMaterial, groupOrder, _vector3.z, group ); } } } else if ( material$1.visible ) { currentRenderList.push( object, geometry$1, material$1, groupOrder, _vector3.z, null ); } } } } var children = object.children; for ( var i$1 = 0, l$1 = children.length; i$1 < l$1; i$1 ++ ) { projectObject( children[ i$1 ], camera, groupOrder, sortObjects ); } } function renderObjects( renderList, scene, camera ) { var overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; for ( var i = 0, l = renderList.length; i < l; i ++ ) { var renderItem = renderList[ i ]; var object = renderItem.object; var geometry = renderItem.geometry; var material = overrideMaterial === null ? renderItem.material : overrideMaterial; var group = renderItem.group; if ( camera.isArrayCamera ) { _currentArrayCamera = camera; var cameras = camera.cameras; for ( var j = 0, jl = cameras.length; j < jl; j ++ ) { var camera2 = cameras[ j ]; if ( object.layers.test( camera2.layers ) ) { state.viewport( _currentViewport.copy( camera2.viewport ) ); currentRenderState.setupLights( camera2 ); renderObject( object, scene, camera2, geometry, material, group ); } } } else { _currentArrayCamera = null; renderObject( object, scene, camera, geometry, material, group ); } } } function renderObject( object, scene, camera, geometry, material, group ) { object.onBeforeRender( _this, scene, camera, geometry, material, group ); currentRenderState = renderStates.get( scene, _currentArrayCamera || camera ); object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); if ( object.isImmediateRenderObject ) { var program = setProgram( camera, scene, material, object ); state.setMaterial( material ); bindingStates.reset(); renderObjectImmediate( object, program ); } else { _this.renderBufferDirect( camera, scene, geometry, material, object, group ); } object.onAfterRender( _this, scene, camera, geometry, material, group ); currentRenderState = renderStates.get( scene, _currentArrayCamera || camera ); } function initMaterial( material, scene, object ) { if ( scene.isScene !== true ) { scene = _emptyScene; } // scene could be a Mesh, Line, Points, ... var materialProperties = properties.get( material ); var lights = currentRenderState.state.lights; var shadowsArray = currentRenderState.state.shadowsArray; var lightsStateVersion = lights.state.version; var parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, object ); var programCacheKey = programCache.getProgramCacheKey( parameters ); var program = materialProperties.program; var programChange = true; if ( program === undefined ) { // new material material.addEventListener( 'dispose', onMaterialDispose ); } else if ( program.cacheKey !== programCacheKey ) { // changed glsl or parameters releaseMaterialProgramReference( material ); } else if ( materialProperties.lightsStateVersion !== lightsStateVersion ) { programChange = false; } else if ( parameters.shaderID !== undefined ) { // same glsl and uniform list, envMap still needs the update here to avoid a frame-late effect var environment = material.isMeshStandardMaterial ? scene.environment : null; materialProperties.envMap = cubemaps.get( material.envMap || environment ); return; } else { // only rebuild uniform list programChange = false; } if ( programChange ) { parameters.uniforms = programCache.getUniforms( material ); material.onBeforeCompile( parameters, _this ); program = programCache.acquireProgram( parameters, programCacheKey ); materialProperties.program = program; materialProperties.uniforms = parameters.uniforms; materialProperties.outputEncoding = parameters.outputEncoding; } var uniforms = materialProperties.uniforms; if ( ! material.isShaderMaterial && ! material.isRawShaderMaterial || material.clipping === true ) { materialProperties.numClippingPlanes = clipping.numPlanes; materialProperties.numIntersection = clipping.numIntersection; uniforms.clippingPlanes = clipping.uniform; } materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; materialProperties.fog = scene.fog; materialProperties.envMap = cubemaps.get( material.envMap || materialProperties.environment ); // store the light setup it was created for materialProperties.needsLights = materialNeedsLights( material ); materialProperties.lightsStateVersion = lightsStateVersion; if ( materialProperties.needsLights ) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = lights.state.ambient; uniforms.lightProbe.value = lights.state.probe; uniforms.directionalLights.value = lights.state.directional; uniforms.directionalLightShadows.value = lights.state.directionalShadow; uniforms.spotLights.value = lights.state.spot; uniforms.spotLightShadows.value = lights.state.spotShadow; uniforms.rectAreaLights.value = lights.state.rectArea; uniforms.ltc_1.value = lights.state.rectAreaLTC1; uniforms.ltc_2.value = lights.state.rectAreaLTC2; uniforms.pointLights.value = lights.state.point; uniforms.pointLightShadows.value = lights.state.pointShadow; uniforms.hemisphereLights.value = lights.state.hemi; uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; uniforms.spotShadowMap.value = lights.state.spotShadowMap; uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix; uniforms.pointShadowMap.value = lights.state.pointShadowMap; uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms } var progUniforms = materialProperties.program.getUniforms(); var uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, uniforms ); materialProperties.uniformsList = uniformsList; } function setProgram( camera, scene, material, object ) { if ( scene.isScene !== true ) { scene = _emptyScene; } // scene could be a Mesh, Line, Points, ... textures.resetTextureUnits(); var fog = scene.fog; var environment = material.isMeshStandardMaterial ? scene.environment : null; var encoding = ( _currentRenderTarget === null ) ? _this.outputEncoding : _currentRenderTarget.texture.encoding; var envMap = cubemaps.get( material.envMap || environment ); var materialProperties = properties.get( material ); var lights = currentRenderState.state.lights; if ( _clippingEnabled === true ) { if ( _localClippingEnabled === true || camera !== _currentCamera ) { var useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) clipping.setState( material, camera, useCache ); } } if ( material.version === materialProperties.__version ) { if ( material.fog && materialProperties.fog !== fog ) { initMaterial( material, scene, object ); } else if ( materialProperties.environment !== environment ) { initMaterial( material, scene, object ); } else if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) { initMaterial( material, scene, object ); } else if ( materialProperties.numClippingPlanes !== undefined && ( materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection ) ) { initMaterial( material, scene, object ); } else if ( materialProperties.outputEncoding !== encoding ) { initMaterial( material, scene, object ); } else if ( materialProperties.envMap !== envMap ) { initMaterial( material, scene, object ); } } else { initMaterial( material, scene, object ); materialProperties.__version = material.version; } var refreshProgram = false; var refreshMaterial = false; var refreshLights = false; var program = materialProperties.program, p_uniforms = program.getUniforms(), m_uniforms = materialProperties.uniforms; if ( state.useProgram( program.program ) ) { refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || _currentCamera !== camera ) { p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix ); if ( capabilities.logarithmicDepthBuffer ) { p_uniforms.setValue( _gl, 'logDepthBufFC', 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } if ( _currentCamera !== camera ) { _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap ) { var uCamPos = p_uniforms.map.cameraPosition; if ( uCamPos !== undefined ) { uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) ); } } if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial ) { p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true ); } if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || material.skinning ) { p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse ); } } // skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // otherwise textures used for skinning can take over texture units reserved for other material textures if ( material.skinning ) { p_uniforms.setOptional( _gl, object, 'bindMatrix' ); p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' ); var skeleton = object.skeleton; if ( skeleton ) { var bones = skeleton.bones; if ( capabilities.floatVertexTextures ) { if ( skeleton.boneTexture === undefined ) { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) var size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix size = MathUtils.ceilPowerOfTwo( size ); size = Math.max( size, 4 ); var boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel boneMatrices.set( skeleton.boneMatrices ); // copy current values var boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType ); skeleton.boneMatrices = boneMatrices; skeleton.boneTexture = boneTexture; skeleton.boneTextureSize = size; } p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures ); p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize ); } else { p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' ); } } } if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) { materialProperties.receiveShadow = object.receiveShadow; p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow ); } if ( refreshMaterial ) { p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure ); if ( materialProperties.needsLights ) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); } // refresh uniforms common to several materials if ( fog && material.fog ) { materials.refreshFogUniforms( m_uniforms, fog ); } materials.refreshMaterialUniforms( m_uniforms, material, _pixelRatio, _height ); WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures ); } if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) { WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures ); material.uniformsNeedUpdate = false; } if ( material.isSpriteMaterial ) { p_uniforms.setValue( _gl, 'center', object.center ); } // common matrices p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix ); p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix ); p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld ); return program; } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate( uniforms, value ) { uniforms.ambientLightColor.needsUpdate = value; uniforms.lightProbe.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.directionalLightShadows.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.pointLightShadows.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.spotLightShadows.needsUpdate = value; uniforms.rectAreaLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } function materialNeedsLights( material ) { return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || ( material.isShaderMaterial && material.lights === true ); } // this.setFramebuffer = function ( value ) { if ( _framebuffer !== value && _currentRenderTarget === null ) { _gl.bindFramebuffer( 36160, value ); } _framebuffer = value; }; this.getActiveCubeFace = function () { return _currentActiveCubeFace; }; this.getActiveMipmapLevel = function () { return _currentActiveMipmapLevel; }; this.getRenderList = function () { return currentRenderList; }; this.setRenderList = function ( renderList ) { currentRenderList = renderList; }; this.getRenderState = function () { return currentRenderState; }; this.setRenderState = function ( renderState ) { currentRenderState = renderState; }; this.getRenderTarget = function () { return _currentRenderTarget; }; this.setRenderTarget = function ( renderTarget, activeCubeFace, activeMipmapLevel ) { if ( activeCubeFace === void 0 ) activeCubeFace = 0; if ( activeMipmapLevel === void 0 ) activeMipmapLevel = 0; _currentRenderTarget = renderTarget; _currentActiveCubeFace = activeCubeFace; _currentActiveMipmapLevel = activeMipmapLevel; if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) { textures.setupRenderTarget( renderTarget ); } var framebuffer = _framebuffer; var isCube = false; if ( renderTarget ) { var _webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget ) { framebuffer = _webglFramebuffer[ activeCubeFace ]; isCube = true; } else if ( renderTarget.isWebGLMultisampleRenderTarget ) { framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer; } else { framebuffer = _webglFramebuffer; } _currentViewport.copy( renderTarget.viewport ); _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest; } else { _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor(); _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor(); _currentScissorTest = _scissorTest; } if ( _currentFramebuffer !== framebuffer ) { _gl.bindFramebuffer( 36160, framebuffer ); _currentFramebuffer = framebuffer; } state.viewport( _currentViewport ); state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest ); if ( isCube ) { var textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( 36160, 36064, 34069 + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel ); } }; this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) { if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return; } var framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) { framebuffer = framebuffer[ activeCubeFaceIndex ]; } if ( framebuffer ) { var restore = false; if ( framebuffer !== _currentFramebuffer ) { _gl.bindFramebuffer( 36160, framebuffer ); restore = true; } try { var texture = renderTarget.texture; var textureFormat = texture.format; var textureType = texture.type; if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( 35739 ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return; } if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( 35738 ) && // IE11, Edge and Chrome Mac < 52 (#9513) ! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox ! ( textureType === HalfFloatType && ( capabilities.isWebGL2 ? extensions.get( 'EXT_color_buffer_float' ) : extensions.get( 'EXT_color_buffer_half_float' ) ) ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return; } if ( _gl.checkFramebufferStatus( 36160 ) === 36053 ) { // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer ); } } else { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' ); } } finally { if ( restore ) { _gl.bindFramebuffer( 36160, _currentFramebuffer ); } } } }; this.copyFramebufferToTexture = function ( position, texture, level ) { if ( level === undefined ) { level = 0; } var levelScale = Math.pow( 2, - level ); var width = Math.floor( texture.image.width * levelScale ); var height = Math.floor( texture.image.height * levelScale ); var glFormat = utils.convert( texture.format ); textures.setTexture2D( texture, 0 ); _gl.copyTexImage2D( 3553, level, glFormat, position.x, position.y, width, height, 0 ); state.unbindTexture(); }; this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level ) { if ( level === undefined ) { level = 0; } var width = srcTexture.image.width; var height = srcTexture.image.height; var glFormat = utils.convert( dstTexture.format ); var glType = utils.convert( dstTexture.type ); textures.setTexture2D( dstTexture, 0 ); // As another texture upload may have changed pixelStorei // parameters, make sure they are correct for the dstTexture _gl.pixelStorei( 37440, dstTexture.flipY ); _gl.pixelStorei( 37441, dstTexture.premultiplyAlpha ); _gl.pixelStorei( 3317, dstTexture.unpackAlignment ); if ( srcTexture.isDataTexture ) { _gl.texSubImage2D( 3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data ); } else { if ( srcTexture.isCompressedTexture ) { _gl.compressedTexSubImage2D( 3553, level, position.x, position.y, srcTexture.mipmaps[ 0 ].width, srcTexture.mipmaps[ 0 ].height, glFormat, srcTexture.mipmaps[ 0 ].data ); } else { _gl.texSubImage2D( 3553, level, position.x, position.y, glFormat, glType, srcTexture.image ); } } // Generate mipmaps only when copying level 0 if ( level === 0 && dstTexture.generateMipmaps ) { _gl.generateMipmap( 3553 ); } state.unbindTexture(); }; this.initTexture = function ( texture ) { textures.setTexture2D( texture, 0 ); state.unbindTexture(); }; if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef } } function WebGL1Renderer( parameters ) { WebGLRenderer.call( this, parameters ); } WebGL1Renderer.prototype = Object.assign( Object.create( WebGLRenderer.prototype ), { constructor: WebGL1Renderer, isWebGL1Renderer: true } ); var FogExp2 = function FogExp2( color, density ) { Object.defineProperty( this, 'isFogExp2', { value: true } ); this.name = ''; this.color = new Color( color ); this.density = ( density !== undefined ) ? density : 0.00025; }; FogExp2.prototype.clone = function clone () { return new FogExp2( this.color, this.density ); }; FogExp2.prototype.toJSON = function toJSON ( /* meta */ ) { return { type: 'FogExp2', color: this.color.getHex(), density: this.density }; }; var Fog = function Fog( color, near, far ) { Object.defineProperty( this, 'isFog', { value: true } ); this.name = ''; this.color = new Color( color ); this.near = ( near !== undefined ) ? near : 1; this.far = ( far !== undefined ) ? far : 1000; }; Fog.prototype.clone = function clone () { return new Fog( this.color, this.near, this.far ); }; Fog.prototype.toJSON = function toJSON ( /* meta */ ) { return { type: 'Fog', color: this.color.getHex(), near: this.near, far: this.far }; }; function Scene() { Object3D.call(this); Object.defineProperty( this, 'isScene', { value: true } ); this.type = 'Scene'; this.background = null; this.environment = null; this.fog = null; this.overrideMaterial = null; this.autoUpdate = true; // checked by the renderer if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef } } Scene.prototype = Object.create( Object3D.prototype ); Scene.prototype.constructor = Scene; Scene.prototype.copy = function copy ( source, recursive ) { Object3D.prototype.copy.call( this, source, recursive ); if ( source.background !== null ) { this.background = source.background.clone(); } if ( source.environment !== null ) { this.environment = source.environment.clone(); } if ( source.fog !== null ) { this.fog = source.fog.clone(); } if ( source.overrideMaterial !== null ) { this.overrideMaterial = source.overrideMaterial.clone(); } this.autoUpdate = source.autoUpdate; this.matrixAutoUpdate = source.matrixAutoUpdate; return this; }; Scene.prototype.toJSON = function toJSON ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); if ( this.background !== null ) { data.object.background = this.background.toJSON( meta ); } if ( this.environment !== null ) { data.object.environment = this.environment.toJSON( meta ); } if ( this.fog !== null ) { data.object.fog = this.fog.toJSON(); } return data; }; function InterleavedBuffer( array, stride ) { this.array = array; this.stride = stride; this.count = array !== undefined ? array.length / stride : 0; this.usage = StaticDrawUsage; this.updateRange = { offset: 0, count: - 1 }; this.version = 0; this.uuid = MathUtils.generateUUID(); } Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', { set: function ( value ) { if ( value === true ) { this.version ++; } } } ); Object.assign( InterleavedBuffer.prototype, { isInterleavedBuffer: true, onUploadCallback: function () {}, setUsage: function ( value ) { this.usage = value; return this; }, copy: function ( source ) { this.array = new source.array.constructor( source.array ); this.count = source.count; this.stride = source.stride; this.usage = source.usage; return this; }, copyAt: function ( index1, attribute, index2 ) { index1 *= this.stride; index2 *= attribute.stride; for ( var i = 0, l = this.stride; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; }, set: function ( value, offset ) { if ( offset === undefined ) { offset = 0; } this.array.set( value, offset ); return this; }, clone: function ( data ) { if ( data.arrayBuffers === undefined ) { data.arrayBuffers = {}; } if ( this.array.buffer._uuid === undefined ) { this.array.buffer._uuid = MathUtils.generateUUID(); } if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { data.arrayBuffers[ this.array.buffer._uuid ] = this.array.slice( 0 ).buffer; } var array = new this.array.constructor( data.arrayBuffers[ this.array.buffer._uuid ] ); var ib = new InterleavedBuffer( array, this.stride ); ib.setUsage( this.usage ); return ib; }, onUpload: function ( callback ) { this.onUploadCallback = callback; return this; }, toJSON: function ( data ) { if ( data.arrayBuffers === undefined ) { data.arrayBuffers = {}; } // generate UUID for array buffer if necessary if ( this.array.buffer._uuid === undefined ) { this.array.buffer._uuid = MathUtils.generateUUID(); } if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { data.arrayBuffers[ this.array.buffer._uuid ] = Array.prototype.slice.call( new Uint32Array( this.array.buffer ) ); } // return { uuid: this.uuid, buffer: this.array.buffer._uuid, type: this.array.constructor.name, stride: this.stride }; } } ); var _vector$6 = new Vector3(); function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) { this.name = ''; this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; this.normalized = normalized === true; } Object.defineProperties( InterleavedBufferAttribute.prototype, { count: { get: function () { return this.data.count; } }, array: { get: function () { return this.data.array; } }, needsUpdate: { set: function ( value ) { this.data.needsUpdate = value; } } } ); Object.assign( InterleavedBufferAttribute.prototype, { isInterleavedBufferAttribute: true, applyMatrix4: function ( m ) { for ( var i = 0, l = this.data.count; i < l; i ++ ) { _vector$6.x = this.getX( i ); _vector$6.y = this.getY( i ); _vector$6.z = this.getZ( i ); _vector$6.applyMatrix4( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; }, setX: function ( index, x ) { this.data.array[ index * this.data.stride + this.offset ] = x; return this; }, setY: function ( index, y ) { this.data.array[ index * this.data.stride + this.offset + 1 ] = y; return this; }, setZ: function ( index, z ) { this.data.array[ index * this.data.stride + this.offset + 2 ] = z; return this; }, setW: function ( index, w ) { this.data.array[ index * this.data.stride + this.offset + 3 ] = w; return this; }, getX: function ( index ) { return this.data.array[ index * this.data.stride + this.offset ]; }, getY: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 1 ]; }, getZ: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 2 ]; }, getW: function ( index ) { return this.data.array[ index * this.data.stride + this.offset + 3 ]; }, setXY: function ( index, x, y ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; return this; }, setXYZ: function ( index, x, y, z ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; return this; }, setXYZW: function ( index, x, y, z, w ) { index = index * this.data.stride + this.offset; this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; this.data.array[ index + 3 ] = w; return this; }, clone: function ( data ) { if ( data === undefined ) { console.log( 'THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.' ); var array = []; for ( var i = 0; i < this.count; i ++ ) { var index = i * this.data.stride + this.offset; for ( var j = 0; j < this.itemSize; j ++ ) { array.push( this.data.array[ index + j ] ); } } return new BufferAttribute( new this.array.constructor( array ), this.itemSize, this.normalized ); } else { if ( data.interleavedBuffers === undefined ) { data.interleavedBuffers = {}; } if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { data.interleavedBuffers[ this.data.uuid ] = this.data.clone( data ); } return new InterleavedBufferAttribute( data.interleavedBuffers[ this.data.uuid ], this.itemSize, this.offset, this.normalized ); } }, toJSON: function ( data ) { if ( data === undefined ) { console.log( 'THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.' ); var array = []; for ( var i = 0; i < this.count; i ++ ) { var index = i * this.data.stride + this.offset; for ( var j = 0; j < this.itemSize; j ++ ) { array.push( this.data.array[ index + j ] ); } } // deinterleave data and save it as an ordinary buffer attribute for now return { itemSize: this.itemSize, type: this.array.constructor.name, array: array, normalized: this.normalized }; } else { // save as true interlaved attribtue if ( data.interleavedBuffers === undefined ) { data.interleavedBuffers = {}; } if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { data.interleavedBuffers[ this.data.uuid ] = this.data.toJSON( data ); } return { isInterleavedBufferAttribute: true, itemSize: this.itemSize, data: this.data.uuid, offset: this.offset, normalized: this.normalized }; } } } ); /** * parameters = { * color: , * map: new THREE.Texture( ), * alphaMap: new THREE.Texture( ), * rotation: , * sizeAttenuation: * } */ function SpriteMaterial( parameters ) { Material.call( this ); this.type = 'SpriteMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.alphaMap = null; this.rotation = 0; this.sizeAttenuation = true; this.transparent = true; this.setValues( parameters ); } SpriteMaterial.prototype = Object.create( Material.prototype ); SpriteMaterial.prototype.constructor = SpriteMaterial; SpriteMaterial.prototype.isSpriteMaterial = true; SpriteMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.alphaMap = source.alphaMap; this.rotation = source.rotation; this.sizeAttenuation = source.sizeAttenuation; return this; }; var _geometry; var _intersectPoint = new Vector3(); var _worldScale = new Vector3(); var _mvPosition = new Vector3(); var _alignedPosition = new Vector2(); var _rotatedPosition = new Vector2(); var _viewWorldMatrix = new Matrix4(); var _vA$1 = new Vector3(); var _vB$1 = new Vector3(); var _vC$1 = new Vector3(); var _uvA$1 = new Vector2(); var _uvB$1 = new Vector2(); var _uvC$1 = new Vector2(); function Sprite( material ) { Object3D.call( this ); this.type = 'Sprite'; if ( _geometry === undefined ) { _geometry = new BufferGeometry(); var float32Array = new Float32Array( [ - 0.5, - 0.5, 0, 0, 0, 0.5, - 0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, - 0.5, 0.5, 0, 0, 1 ] ); var interleavedBuffer = new InterleavedBuffer( float32Array, 5 ); _geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] ); _geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) ); _geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) ); } this.geometry = _geometry; this.material = ( material !== undefined ) ? material : new SpriteMaterial(); this.center = new Vector2( 0.5, 0.5 ); } Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Sprite, isSprite: true, raycast: function ( raycaster, intersects ) { if ( raycaster.camera === null ) { console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' ); } _worldScale.setFromMatrixScale( this.matrixWorld ); _viewWorldMatrix.copy( raycaster.camera.matrixWorld ); this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld ); _mvPosition.setFromMatrixPosition( this.modelViewMatrix ); if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) { _worldScale.multiplyScalar( - _mvPosition.z ); } var rotation = this.material.rotation; var sin, cos; if ( rotation !== 0 ) { cos = Math.cos( rotation ); sin = Math.sin( rotation ); } var center = this.center; transformVertex( _vA$1.set( - 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); transformVertex( _vB$1.set( 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); transformVertex( _vC$1.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); _uvA$1.set( 0, 0 ); _uvB$1.set( 1, 0 ); _uvC$1.set( 1, 1 ); // check first triangle var intersect = raycaster.ray.intersectTriangle( _vA$1, _vB$1, _vC$1, false, _intersectPoint ); if ( intersect === null ) { // check second triangle transformVertex( _vB$1.set( - 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); _uvB$1.set( 0, 1 ); intersect = raycaster.ray.intersectTriangle( _vA$1, _vC$1, _vB$1, false, _intersectPoint ); if ( intersect === null ) { return; } } var distance = raycaster.ray.origin.distanceTo( _intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) { return; } intersects.push( { distance: distance, point: _intersectPoint.clone(), uv: Triangle.getUV( _intersectPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ), face: null, object: this } ); }, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); if ( source.center !== undefined ) { this.center.copy( source.center ); } this.material = source.material; return this; } } ); function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) { // compute position in camera space _alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale ); // to check if rotation is not zero if ( sin !== undefined ) { _rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y ); _rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y ); } else { _rotatedPosition.copy( _alignedPosition ); } vertexPosition.copy( mvPosition ); vertexPosition.x += _rotatedPosition.x; vertexPosition.y += _rotatedPosition.y; // transform to world space vertexPosition.applyMatrix4( _viewWorldMatrix ); } var _v1$4 = new Vector3(); var _v2$2 = new Vector3(); function LOD() { Object3D.call( this ); this._currentLevel = 0; this.type = 'LOD'; Object.defineProperties( this, { levels: { enumerable: true, value: [] } } ); this.autoUpdate = true; } LOD.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: LOD, isLOD: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source, false ); var levels = source.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; this.addLevel( level.object.clone(), level.distance ); } this.autoUpdate = source.autoUpdate; return this; }, addLevel: function ( object, distance ) { if ( distance === undefined ) { distance = 0; } distance = Math.abs( distance ); var levels = this.levels; var l; for ( l = 0; l < levels.length; l ++ ) { if ( distance < levels[ l ].distance ) { break; } } levels.splice( l, 0, { distance: distance, object: object } ); this.add( object ); return this; }, getCurrentLevel: function () { return this._currentLevel; }, getObjectForDistance: function ( distance ) { var levels = this.levels; if ( levels.length > 0 ) { var i, l; for ( i = 1, l = levels.length; i < l; i ++ ) { if ( distance < levels[ i ].distance ) { break; } } return levels[ i - 1 ].object; } return null; }, raycast: function ( raycaster, intersects ) { var levels = this.levels; if ( levels.length > 0 ) { _v1$4.setFromMatrixPosition( this.matrixWorld ); var distance = raycaster.ray.origin.distanceTo( _v1$4 ); this.getObjectForDistance( distance ).raycast( raycaster, intersects ); } }, update: function ( camera ) { var levels = this.levels; if ( levels.length > 1 ) { _v1$4.setFromMatrixPosition( camera.matrixWorld ); _v2$2.setFromMatrixPosition( this.matrixWorld ); var distance = _v1$4.distanceTo( _v2$2 ) / camera.zoom; levels[ 0 ].object.visible = true; var i, l; for ( i = 1, l = levels.length; i < l; i ++ ) { if ( distance >= levels[ i ].distance ) { levels[ i - 1 ].object.visible = false; levels[ i ].object.visible = true; } else { break; } } this._currentLevel = i - 1; for ( ; i < l; i ++ ) { levels[ i ].object.visible = false; } } }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); if ( this.autoUpdate === false ) { data.object.autoUpdate = false; } data.object.levels = []; var levels = this.levels; for ( var i = 0, l = levels.length; i < l; i ++ ) { var level = levels[ i ]; data.object.levels.push( { object: level.object.uuid, distance: level.distance } ); } return data; } } ); function SkinnedMesh( geometry, material ) { if ( geometry && geometry.isGeometry ) { console.error( 'THREE.SkinnedMesh no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); } Mesh.call( this, geometry, material ); this.type = 'SkinnedMesh'; this.bindMode = 'attached'; this.bindMatrix = new Matrix4(); this.bindMatrixInverse = new Matrix4(); } SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), { constructor: SkinnedMesh, isSkinnedMesh: true, copy: function ( source ) { Mesh.prototype.copy.call( this, source ); this.bindMode = source.bindMode; this.bindMatrix.copy( source.bindMatrix ); this.bindMatrixInverse.copy( source.bindMatrixInverse ); this.skeleton = source.skeleton; return this; }, bind: function ( skeleton, bindMatrix ) { this.skeleton = skeleton; if ( bindMatrix === undefined ) { this.updateMatrixWorld( true ); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.getInverse( bindMatrix ); }, pose: function () { this.skeleton.pose(); }, normalizeSkinWeights: function () { var vector = new Vector4(); var skinWeight = this.geometry.attributes.skinWeight; for ( var i = 0, l = skinWeight.count; i < l; i ++ ) { vector.x = skinWeight.getX( i ); vector.y = skinWeight.getY( i ); vector.z = skinWeight.getZ( i ); vector.w = skinWeight.getW( i ); var scale = 1.0 / vector.manhattanLength(); if ( scale !== Infinity ) { vector.multiplyScalar( scale ); } else { vector.set( 1, 0, 0, 0 ); // do something reasonable } skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w ); } }, updateMatrixWorld: function ( force ) { Mesh.prototype.updateMatrixWorld.call( this, force ); if ( this.bindMode === 'attached' ) { this.bindMatrixInverse.getInverse( this.matrixWorld ); } else if ( this.bindMode === 'detached' ) { this.bindMatrixInverse.getInverse( this.bindMatrix ); } else { console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode ); } }, boneTransform: ( function () { var basePosition = new Vector3(); var skinIndex = new Vector4(); var skinWeight = new Vector4(); var vector = new Vector3(); var matrix = new Matrix4(); return function ( index, target ) { var skeleton = this.skeleton; var geometry = this.geometry; skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index ); skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index ); basePosition.fromBufferAttribute( geometry.attributes.position, index ).applyMatrix4( this.bindMatrix ); target.set( 0, 0, 0 ); for ( var i = 0; i < 4; i ++ ) { var weight = skinWeight.getComponent( i ); if ( weight !== 0 ) { var boneIndex = skinIndex.getComponent( i ); matrix.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] ); target.addScaledVector( vector.copy( basePosition ).applyMatrix4( matrix ), weight ); } } return target.applyMatrix4( this.bindMatrixInverse ); }; }() ) } ); var _offsetMatrix = new Matrix4(); var _identityMatrix = new Matrix4(); function Skeleton( bones, boneInverses ) { // copy the bone array bones = bones || []; this.bones = bones.slice( 0 ); this.boneMatrices = new Float32Array( this.bones.length * 16 ); this.frame = - 1; // use the supplied bone inverses or calculate the inverses if ( boneInverses === undefined ) { this.calculateInverses(); } else { if ( this.bones.length === boneInverses.length ) { this.boneInverses = boneInverses.slice( 0 ); } else { console.warn( 'THREE.Skeleton boneInverses is the wrong length.' ); this.boneInverses = []; for ( var i = 0, il = this.bones.length; i < il; i ++ ) { this.boneInverses.push( new Matrix4() ); } } } } Object.assign( Skeleton.prototype, { calculateInverses: function () { this.boneInverses = []; for ( var i = 0, il = this.bones.length; i < il; i ++ ) { var inverse = new Matrix4(); if ( this.bones[ i ] ) { inverse.getInverse( this.bones[ i ].matrixWorld ); } this.boneInverses.push( inverse ); } }, pose: function () { // recover the bind-time world matrices for ( var i = 0, il = this.bones.length; i < il; i ++ ) { var bone = this.bones[ i ]; if ( bone ) { bone.matrixWorld.getInverse( this.boneInverses[ i ] ); } } // compute the local matrices, positions, rotations and scales for ( var i$1 = 0, il$1 = this.bones.length; i$1 < il$1; i$1 ++ ) { var bone$1 = this.bones[ i$1 ]; if ( bone$1 ) { if ( bone$1.parent && bone$1.parent.isBone ) { bone$1.matrix.getInverse( bone$1.parent.matrixWorld ); bone$1.matrix.multiply( bone$1.matrixWorld ); } else { bone$1.matrix.copy( bone$1.matrixWorld ); } bone$1.matrix.decompose( bone$1.position, bone$1.quaternion, bone$1.scale ); } } }, update: function () { var bones = this.bones; var boneInverses = this.boneInverses; var boneMatrices = this.boneMatrices; var boneTexture = this.boneTexture; // flatten bone matrices to array for ( var i = 0, il = bones.length; i < il; i ++ ) { // compute the offset between the current and the original transform var matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix; _offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] ); _offsetMatrix.toArray( boneMatrices, i * 16 ); } if ( boneTexture !== undefined ) { boneTexture.needsUpdate = true; } }, clone: function () { return new Skeleton( this.bones, this.boneInverses ); }, getBoneByName: function ( name ) { for ( var i = 0, il = this.bones.length; i < il; i ++ ) { var bone = this.bones[ i ]; if ( bone.name === name ) { return bone; } } return undefined; }, dispose: function ( ) { if ( this.boneTexture ) { this.boneTexture.dispose(); this.boneTexture = undefined; } } } ); function Bone() { Object3D.call( this ); this.type = 'Bone'; } Bone.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Bone, isBone: true } ); var _instanceLocalMatrix = new Matrix4(); var _instanceWorldMatrix = new Matrix4(); var _instanceIntersects = []; var _mesh = new Mesh(); function InstancedMesh( geometry, material, count ) { Mesh.call( this, geometry, material ); this.instanceMatrix = new BufferAttribute( new Float32Array( count * 16 ), 16 ); this.instanceColor = null; this.count = count; this.frustumCulled = false; } InstancedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), { constructor: InstancedMesh, isInstancedMesh: true, copy: function ( source ) { Mesh.prototype.copy.call( this, source ); this.instanceMatrix.copy( source.instanceMatrix ); this.count = source.count; return this; }, setColorAt: function ( index, color ) { if ( this.instanceColor === null ) { this.instanceColor = new BufferAttribute( new Float32Array( this.count * 3 ), 3 ); } color.toArray( this.instanceColor.array, index * 3 ); }, getMatrixAt: function ( index, matrix ) { matrix.fromArray( this.instanceMatrix.array, index * 16 ); }, raycast: function ( raycaster, intersects ) { var matrixWorld = this.matrixWorld; var raycastTimes = this.count; _mesh.geometry = this.geometry; _mesh.material = this.material; if ( _mesh.material === undefined ) { return; } for ( var instanceId = 0; instanceId < raycastTimes; instanceId ++ ) { // calculate the world matrix for each instance this.getMatrixAt( instanceId, _instanceLocalMatrix ); _instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix ); // the mesh represents this single instance _mesh.matrixWorld = _instanceWorldMatrix; _mesh.raycast( raycaster, _instanceIntersects ); // process the result of raycast for ( var i = 0, l = _instanceIntersects.length; i < l; i ++ ) { var intersect = _instanceIntersects[ i ]; intersect.instanceId = instanceId; intersect.object = this; intersects.push( intersect ); } _instanceIntersects.length = 0; } }, setMatrixAt: function ( index, matrix ) { matrix.toArray( this.instanceMatrix.array, index * 16 ); }, updateMorphTargets: function () { } } ); /** * parameters = { * color: , * opacity: , * * linewidth: , * linecap: "round", * linejoin: "round" * } */ function LineBasicMaterial( parameters ) { Material.call( this ); this.type = 'LineBasicMaterial'; this.color = new Color( 0xffffff ); this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.morphTargets = false; this.setValues( parameters ); } LineBasicMaterial.prototype = Object.create( Material.prototype ); LineBasicMaterial.prototype.constructor = LineBasicMaterial; LineBasicMaterial.prototype.isLineBasicMaterial = true; LineBasicMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; this.morphTargets = source.morphTargets; return this; }; var _start = new Vector3(); var _end = new Vector3(); var _inverseMatrix$1 = new Matrix4(); var _ray$1 = new Ray(); var _sphere$2 = new Sphere(); function Line( geometry, material, mode ) { if ( mode === 1 ) { console.error( 'THREE.Line: parameter THREE.LinePieces no longer supported. Use THREE.LineSegments instead.' ); } Object3D.call( this ); this.type = 'Line'; this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new LineBasicMaterial(); this.updateMorphTargets(); } Line.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Line, isLine: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.material = source.material; this.geometry = source.geometry; return this; }, computeLineDistances: function () { var geometry = this.geometry; if ( geometry.isBufferGeometry ) { // we assume non-indexed geometry if ( geometry.index === null ) { var positionAttribute = geometry.attributes.position; var lineDistances = [ 0 ]; for ( var i = 1, l = positionAttribute.count; i < l; i ++ ) { _start.fromBufferAttribute( positionAttribute, i - 1 ); _end.fromBufferAttribute( positionAttribute, i ); lineDistances[ i ] = lineDistances[ i - 1 ]; lineDistances[ i ] += _start.distanceTo( _end ); } geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); } else { console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); } } else if ( geometry.isGeometry ) { var vertices = geometry.vertices; var lineDistances$1 = geometry.lineDistances; lineDistances$1[ 0 ] = 0; for ( var i$1 = 1, l$1 = vertices.length; i$1 < l$1; i$1 ++ ) { lineDistances$1[ i$1 ] = lineDistances$1[ i$1 - 1 ]; lineDistances$1[ i$1 ] += vertices[ i$1 - 1 ].distanceTo( vertices[ i$1 ] ); } } return this; }, raycast: function ( raycaster, intersects ) { var geometry = this.geometry; var matrixWorld = this.matrixWorld; var threshold = raycaster.params.Line.threshold; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } _sphere$2.copy( geometry.boundingSphere ); _sphere$2.applyMatrix4( matrixWorld ); _sphere$2.radius += threshold; if ( raycaster.ray.intersectsSphere( _sphere$2 ) === false ) { return; } // _inverseMatrix$1.getInverse( matrixWorld ); _ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 ); var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); var localThresholdSq = localThreshold * localThreshold; var vStart = new Vector3(); var vEnd = new Vector3(); var interSegment = new Vector3(); var interRay = new Vector3(); var step = ( this && this.isLineSegments ) ? 2 : 1; if ( geometry.isBufferGeometry ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, l = indices.length - 1; i < l; i += step ) { var a = indices[ i ]; var b = indices[ i + 1 ]; vStart.fromArray( positions, a * 3 ); vEnd.fromArray( positions, b * 3 ); var distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > localThresholdSq ) { continue; } interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) { continue; } intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } else { for ( var i$1 = 0, l$1 = positions.length / 3 - 1; i$1 < l$1; i$1 += step ) { vStart.fromArray( positions, 3 * i$1 ); vEnd.fromArray( positions, 3 * i$1 + 3 ); var distSq$1 = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq$1 > localThresholdSq ) { continue; } interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance$1 = raycaster.ray.origin.distanceTo( interRay ); if ( distance$1 < raycaster.near || distance$1 > raycaster.far ) { continue; } intersects.push( { distance: distance$1, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i$1, face: null, faceIndex: null, object: this } ); } } } else if ( geometry.isGeometry ) { var vertices = geometry.vertices; var nbVertices = vertices.length; for ( var i$2 = 0; i$2 < nbVertices - 1; i$2 += step ) { var distSq$2 = _ray$1.distanceSqToSegment( vertices[ i$2 ], vertices[ i$2 + 1 ], interRay, interSegment ); if ( distSq$2 > localThresholdSq ) { continue; } interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation var distance$2 = raycaster.ray.origin.distanceTo( interRay ); if ( distance$2 < raycaster.near || distance$2 > raycaster.far ) { continue; } intersects.push( { distance: distance$2, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i$2, face: null, faceIndex: null, object: this } ); } } }, updateMorphTargets: function () { var geometry = this.geometry; if ( geometry.isBufferGeometry ) { var morphAttributes = geometry.morphAttributes; var keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { var morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( var m = 0, ml = morphAttribute.length; m < ml; m ++ ) { var name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } else { var morphTargets = geometry.morphTargets; if ( morphTargets !== undefined && morphTargets.length > 0 ) { console.error( 'THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' ); } } } } ); var _start$1 = new Vector3(); var _end$1 = new Vector3(); function LineSegments( geometry, material ) { Line.call( this, geometry, material ); this.type = 'LineSegments'; } LineSegments.prototype = Object.assign( Object.create( Line.prototype ), { constructor: LineSegments, isLineSegments: true, computeLineDistances: function () { var geometry = this.geometry; if ( geometry.isBufferGeometry ) { // we assume non-indexed geometry if ( geometry.index === null ) { var positionAttribute = geometry.attributes.position; var lineDistances = []; for ( var i = 0, l = positionAttribute.count; i < l; i += 2 ) { _start$1.fromBufferAttribute( positionAttribute, i ); _end$1.fromBufferAttribute( positionAttribute, i + 1 ); lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ]; lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 ); } geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); } else { console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); } } else if ( geometry.isGeometry ) { var vertices = geometry.vertices; var lineDistances$1 = geometry.lineDistances; for ( var i$1 = 0, l$1 = vertices.length; i$1 < l$1; i$1 += 2 ) { _start$1.copy( vertices[ i$1 ] ); _end$1.copy( vertices[ i$1 + 1 ] ); lineDistances$1[ i$1 ] = ( i$1 === 0 ) ? 0 : lineDistances$1[ i$1 - 1 ]; lineDistances$1[ i$1 + 1 ] = lineDistances$1[ i$1 ] + _start$1.distanceTo( _end$1 ); } } return this; } } ); function LineLoop( geometry, material ) { Line.call( this, geometry, material ); this.type = 'LineLoop'; } LineLoop.prototype = Object.assign( Object.create( Line.prototype ), { constructor: LineLoop, isLineLoop: true, } ); /** * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * alphaMap: new THREE.Texture( ), * * size: , * sizeAttenuation: * * morphTargets: * } */ function PointsMaterial( parameters ) { Material.call( this ); this.type = 'PointsMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.alphaMap = null; this.size = 1; this.sizeAttenuation = true; this.morphTargets = false; this.setValues( parameters ); } PointsMaterial.prototype = Object.create( Material.prototype ); PointsMaterial.prototype.constructor = PointsMaterial; PointsMaterial.prototype.isPointsMaterial = true; PointsMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.alphaMap = source.alphaMap; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; this.morphTargets = source.morphTargets; return this; }; var _inverseMatrix$2 = new Matrix4(); var _ray$2 = new Ray(); var _sphere$3 = new Sphere(); var _position$1 = new Vector3(); function Points( geometry, material ) { Object3D.call( this ); this.type = 'Points'; this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new PointsMaterial(); this.updateMorphTargets(); } Points.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Points, isPoints: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.material = source.material; this.geometry = source.geometry; return this; }, raycast: function ( raycaster, intersects ) { var geometry = this.geometry; var matrixWorld = this.matrixWorld; var threshold = raycaster.params.Points.threshold; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } _sphere$3.copy( geometry.boundingSphere ); _sphere$3.applyMatrix4( matrixWorld ); _sphere$3.radius += threshold; if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) { return; } // _inverseMatrix$2.getInverse( matrixWorld ); _ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 ); var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); var localThresholdSq = localThreshold * localThreshold; if ( geometry.isBufferGeometry ) { var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array; if ( index !== null ) { var indices = index.array; for ( var i = 0, il = indices.length; i < il; i ++ ) { var a = indices[ i ]; _position$1.fromArray( positions, a * 3 ); testPoint( _position$1, a, localThresholdSq, matrixWorld, raycaster, intersects, this ); } } else { for ( var i$1 = 0, l = positions.length / 3; i$1 < l; i$1 ++ ) { _position$1.fromArray( positions, i$1 * 3 ); testPoint( _position$1, i$1, localThresholdSq, matrixWorld, raycaster, intersects, this ); } } } else { var vertices = geometry.vertices; for ( var i$2 = 0, l$1 = vertices.length; i$2 < l$1; i$2 ++ ) { testPoint( vertices[ i$2 ], i$2, localThresholdSq, matrixWorld, raycaster, intersects, this ); } } }, updateMorphTargets: function () { var geometry = this.geometry; if ( geometry.isBufferGeometry ) { var morphAttributes = geometry.morphAttributes; var keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { var morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( var m = 0, ml = morphAttribute.length; m < ml; m ++ ) { var name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } else { var morphTargets = geometry.morphTargets; if ( morphTargets !== undefined && morphTargets.length > 0 ) { console.error( 'THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' ); } } } } ); function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) { var rayPointDistanceSq = _ray$2.distanceSqToPoint( point ); if ( rayPointDistanceSq < localThresholdSq ) { var intersectPoint = new Vector3(); _ray$2.closestPointToPoint( point, intersectPoint ); intersectPoint.applyMatrix4( matrixWorld ); var distance = raycaster.ray.origin.distanceTo( intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) { return; } intersects.push( { distance: distance, distanceToRay: Math.sqrt( rayPointDistanceSq ), point: intersectPoint, index: index, face: null, object: object } ); } } function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.format = format !== undefined ? format : RGBFormat; this.minFilter = minFilter !== undefined ? minFilter : LinearFilter; this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; this.generateMipmaps = false; var scope = this; function updateVideo() { scope.needsUpdate = true; video.requestVideoFrameCallback( updateVideo ); } if ( 'requestVideoFrameCallback' in video ) { video.requestVideoFrameCallback( updateVideo ); } } VideoTexture.prototype = Object.assign( Object.create( Texture.prototype ), { constructor: VideoTexture, isVideoTexture: true, update: function () { var video = this.image; var hasVideoFrameCallback = 'requestVideoFrameCallback' in video; if ( hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA ) { this.needsUpdate = true; } } } ); function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); this.image = { width: width, height: height }; this.mipmaps = mipmaps; // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false; // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false; } CompressedTexture.prototype = Object.create( Texture.prototype ); CompressedTexture.prototype.constructor = CompressedTexture; CompressedTexture.prototype.isCompressedTexture = true; function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.needsUpdate = true; } CanvasTexture.prototype = Object.create( Texture.prototype ); CanvasTexture.prototype.constructor = CanvasTexture; CanvasTexture.prototype.isCanvasTexture = true; function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) { format = format !== undefined ? format : DepthFormat; if ( format !== DepthFormat && format !== DepthStencilFormat ) { throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' ); } if ( type === undefined && format === DepthFormat ) { type = UnsignedShortType; } if ( type === undefined && format === DepthStencilFormat ) { type = UnsignedInt248Type; } Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.image = { width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.flipY = false; this.generateMipmaps = false; } DepthTexture.prototype = Object.create( Texture.prototype ); DepthTexture.prototype.constructor = DepthTexture; DepthTexture.prototype.isDepthTexture = true; function WireframeGeometry( geometry ) { BufferGeometry.call(this); this.type = 'WireframeGeometry'; // buffer var vertices = []; // helper variables var edge = [ 0, 0 ], edges = {}; var keys = [ 'a', 'b', 'c' ]; // different logic for Geometry and BufferGeometry if ( geometry && geometry.isGeometry ) { // create a data structure that contains all edges without duplicates var faces = geometry.faces; for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { var edge1 = face[ keys[ j ] ]; var edge2 = face[ keys[ ( j + 1 ) % 3 ] ]; edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates edge[ 1 ] = Math.max( edge1, edge2 ); var key = edge[ 0 ] + ',' + edge[ 1 ]; if ( edges[ key ] === undefined ) { edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] }; } } } // generate vertices for ( var key$1 in edges ) { var e = edges[ key$1 ]; var vertex = geometry.vertices[ e.index1 ]; vertices.push( vertex.x, vertex.y, vertex.z ); vertex = geometry.vertices[ e.index2 ]; vertices.push( vertex.x, vertex.y, vertex.z ); } } else if ( geometry && geometry.isBufferGeometry ) { var vertex$1 = new Vector3(); if ( geometry.index !== null ) { // indexed BufferGeometry var position = geometry.attributes.position; var indices = geometry.index; var groups = geometry.groups; if ( groups.length === 0 ) { groups = [ { start: 0, count: indices.count, materialIndex: 0 } ]; } // create a data structure that contains all eges without duplicates for ( var o = 0, ol = groups.length; o < ol; ++ o ) { var group = groups[ o ]; var start = group.start; var count = group.count; for ( var i$1 = start, l$1 = ( start + count ); i$1 < l$1; i$1 += 3 ) { for ( var j$1 = 0; j$1 < 3; j$1 ++ ) { var edge1$1 = indices.getX( i$1 + j$1 ); var edge2$1 = indices.getX( i$1 + ( j$1 + 1 ) % 3 ); edge[ 0 ] = Math.min( edge1$1, edge2$1 ); // sorting prevents duplicates edge[ 1 ] = Math.max( edge1$1, edge2$1 ); var key$2 = edge[ 0 ] + ',' + edge[ 1 ]; if ( edges[ key$2 ] === undefined ) { edges[ key$2 ] = { index1: edge[ 0 ], index2: edge[ 1 ] }; } } } } // generate vertices for ( var key$3 in edges ) { var e$1 = edges[ key$3 ]; vertex$1.fromBufferAttribute( position, e$1.index1 ); vertices.push( vertex$1.x, vertex$1.y, vertex$1.z ); vertex$1.fromBufferAttribute( position, e$1.index2 ); vertices.push( vertex$1.x, vertex$1.y, vertex$1.z ); } } else { // non-indexed BufferGeometry var position$1 = geometry.attributes.position; for ( var i$2 = 0, l$2 = ( position$1.count / 3 ); i$2 < l$2; i$2 ++ ) { for ( var j$2 = 0; j$2 < 3; j$2 ++ ) { // three edges per triangle, an edge is represented as (index1, index2) // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) var index1 = 3 * i$2 + j$2; vertex$1.fromBufferAttribute( position$1, index1 ); vertices.push( vertex$1.x, vertex$1.y, vertex$1.z ); var index2 = 3 * i$2 + ( ( j$2 + 1 ) % 3 ); vertex$1.fromBufferAttribute( position$1, index2 ); vertices.push( vertex$1.x, vertex$1.y, vertex$1.z ); } } } } // build geometry this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); } WireframeGeometry.prototype = Object.create( BufferGeometry.prototype ); WireframeGeometry.prototype.constructor = WireframeGeometry; /** * Parametric Surfaces Geometry * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html */ // ParametricGeometry function ParametricGeometry( func, slices, stacks ) { Geometry.call( this ); this.type = 'ParametricGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) ); this.mergeVertices(); } ParametricGeometry.prototype = Object.create( Geometry.prototype ); ParametricGeometry.prototype.constructor = ParametricGeometry; // ParametricBufferGeometry function ParametricBufferGeometry( func, slices, stacks ) { BufferGeometry.call( this ); this.type = 'ParametricBufferGeometry'; this.parameters = { func: func, slices: slices, stacks: stacks }; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; var EPS = 0.00001; var normal = new Vector3(); var p0 = new Vector3(), p1 = new Vector3(); var pu = new Vector3(), pv = new Vector3(); if ( func.length < 3 ) { console.error( 'THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.' ); } // generate vertices, normals and uvs var sliceCount = slices + 1; for ( var i = 0; i <= stacks; i ++ ) { var v = i / stacks; for ( var j = 0; j <= slices; j ++ ) { var u = j / slices; // vertex func( u, v, p0 ); vertices.push( p0.x, p0.y, p0.z ); // normal // approximate tangent vectors via finite differences if ( u - EPS >= 0 ) { func( u - EPS, v, p1 ); pu.subVectors( p0, p1 ); } else { func( u + EPS, v, p1 ); pu.subVectors( p1, p0 ); } if ( v - EPS >= 0 ) { func( u, v - EPS, p1 ); pv.subVectors( p0, p1 ); } else { func( u, v + EPS, p1 ); pv.subVectors( p1, p0 ); } // cross product of tangent vectors returns surface normal normal.crossVectors( pu, pv ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u, v ); } } // generate indices for ( var i$1 = 0; i$1 < stacks; i$1 ++ ) { for ( var j$1 = 0; j$1 < slices; j$1 ++ ) { var a = i$1 * sliceCount + j$1; var b = i$1 * sliceCount + j$1 + 1; var c = ( i$1 + 1 ) * sliceCount + j$1 + 1; var d = ( i$1 + 1 ) * sliceCount + j$1; // faces one and two indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry; // PolyhedronGeometry function PolyhedronGeometry( vertices, indices, radius, detail ) { Geometry.call(this); this.type = 'PolyhedronGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) ); this.mergeVertices(); } PolyhedronGeometry.prototype = Object.create( Geometry.prototype ); PolyhedronGeometry.prototype.constructor = PolyhedronGeometry; // PolyhedronBufferGeometry function PolyhedronBufferGeometry( vertices, indices, radius, detail ) { BufferGeometry.call(this); this.type = 'PolyhedronBufferGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; radius = radius || 1; detail = detail || 0; // default buffer data var vertexBuffer = []; var uvBuffer = []; // the subdivision creates the vertex buffer data subdivide( detail ); // all vertices should lie on a conceptual sphere with a given radius applyRadius( radius ); // finally, create the uv data generateUVs(); // build non-indexed geometry this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) ); if ( detail === 0 ) { this.computeVertexNormals(); // flat normals } else { this.normalizeNormals(); // smooth normals } // helper functions function subdivide( detail ) { var a = new Vector3(); var b = new Vector3(); var c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value for ( var i = 0; i < indices.length; i += 3 ) { // get the vertices of the face getVertexByIndex( indices[ i + 0 ], a ); getVertexByIndex( indices[ i + 1 ], b ); getVertexByIndex( indices[ i + 2 ], c ); // perform subdivision subdivideFace( a, b, c, detail ); } } function subdivideFace( a, b, c, detail ) { var cols = Math.pow( 2, detail ); // we use this multidimensional array as a data structure for creating the subdivision var v = []; // construct all of the vertices for this subdivision for ( var i = 0; i <= cols; i ++ ) { v[ i ] = []; var aj = a.clone().lerp( c, i / cols ); var bj = b.clone().lerp( c, i / cols ); var rows = cols - i; for ( var j = 0; j <= rows; j ++ ) { if ( j === 0 && i === cols ) { v[ i ][ j ] = aj; } else { v[ i ][ j ] = aj.clone().lerp( bj, j / rows ); } } } // construct all of the faces for ( var i$1 = 0; i$1 < cols; i$1 ++ ) { for ( var j$1 = 0; j$1 < 2 * ( cols - i$1 ) - 1; j$1 ++ ) { var k = Math.floor( j$1 / 2 ); if ( j$1 % 2 === 0 ) { pushVertex( v[ i$1 ][ k + 1 ] ); pushVertex( v[ i$1 + 1 ][ k ] ); pushVertex( v[ i$1 ][ k ] ); } else { pushVertex( v[ i$1 ][ k + 1 ] ); pushVertex( v[ i$1 + 1 ][ k + 1 ] ); pushVertex( v[ i$1 + 1 ][ k ] ); } } } } function applyRadius( radius ) { var vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex for ( var i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; vertex.normalize().multiplyScalar( radius ); vertexBuffer[ i + 0 ] = vertex.x; vertexBuffer[ i + 1 ] = vertex.y; vertexBuffer[ i + 2 ] = vertex.z; } } function generateUVs() { var vertex = new Vector3(); for ( var i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; var u = azimuth( vertex ) / 2 / Math.PI + 0.5; var v = inclination( vertex ) / Math.PI + 0.5; uvBuffer.push( u, 1 - v ); } correctUVs(); correctSeam(); } function correctSeam() { // handle case when face straddles the seam, see #3269 for ( var i = 0; i < uvBuffer.length; i += 6 ) { // uv data of a single face var x0 = uvBuffer[ i + 0 ]; var x1 = uvBuffer[ i + 2 ]; var x2 = uvBuffer[ i + 4 ]; var max = Math.max( x0, x1, x2 ); var min = Math.min( x0, x1, x2 ); // 0.9 is somewhat arbitrary if ( max > 0.9 && min < 0.1 ) { if ( x0 < 0.2 ) { uvBuffer[ i + 0 ] += 1; } if ( x1 < 0.2 ) { uvBuffer[ i + 2 ] += 1; } if ( x2 < 0.2 ) { uvBuffer[ i + 4 ] += 1; } } } } function pushVertex( vertex ) { vertexBuffer.push( vertex.x, vertex.y, vertex.z ); } function getVertexByIndex( index, vertex ) { var stride = index * 3; vertex.x = vertices[ stride + 0 ]; vertex.y = vertices[ stride + 1 ]; vertex.z = vertices[ stride + 2 ]; } function correctUVs() { var a = new Vector3(); var b = new Vector3(); var c = new Vector3(); var centroid = new Vector3(); var uvA = new Vector2(); var uvB = new Vector2(); var uvC = new Vector2(); for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) { a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] ); b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] ); c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] ); uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] ); uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] ); uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] ); centroid.copy( a ).add( b ).add( c ).divideScalar( 3 ); var azi = azimuth( centroid ); correctUV( uvA, j + 0, a, azi ); correctUV( uvB, j + 2, b, azi ); correctUV( uvC, j + 4, c, azi ); } } function correctUV( uv, stride, vector, azimuth ) { if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) { uvBuffer[ stride ] = uv.x - 1; } if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) { uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5; } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth( vector ) { return Math.atan2( vector.z, - vector.x ); } // Angle above the XZ plane. function inclination( vector ) { return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); } } PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry; // TetrahedronGeometry function TetrahedronGeometry( radius, detail ) { Geometry.call(this); this.type = 'TetrahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } TetrahedronGeometry.prototype = Object.create( Geometry.prototype ); TetrahedronGeometry.prototype.constructor = TetrahedronGeometry; // TetrahedronBufferGeometry function TetrahedronBufferGeometry( radius, detail ) { var vertices = [ 1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1 ]; var indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'TetrahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry; // OctahedronGeometry function OctahedronGeometry( radius, detail ) { Geometry.call(this); this.type = 'OctahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } OctahedronGeometry.prototype = Object.create( Geometry.prototype ); OctahedronGeometry.prototype.constructor = OctahedronGeometry; // OctahedronBufferGeometry function OctahedronBufferGeometry( radius, detail ) { var vertices = [ 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1 ]; var indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'OctahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry; // IcosahedronGeometry function IcosahedronGeometry( radius, detail ) { Geometry.call(this); this.type = 'IcosahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } IcosahedronGeometry.prototype = Object.create( Geometry.prototype ); IcosahedronGeometry.prototype.constructor = IcosahedronGeometry; // IcosahedronBufferGeometry function IcosahedronBufferGeometry( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var vertices = [ - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0, 0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1 ]; var indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'IcosahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry; // DodecahedronGeometry function DodecahedronGeometry( radius, detail ) { Geometry.call(this); this.type = 'DodecahedronGeometry'; this.parameters = { radius: radius, detail: detail }; this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) ); this.mergeVertices(); } DodecahedronGeometry.prototype = Object.create( Geometry.prototype ); DodecahedronGeometry.prototype.constructor = DodecahedronGeometry; // DodecahedronBufferGeometry function DodecahedronBufferGeometry( radius, detail ) { var t = ( 1 + Math.sqrt( 5 ) ) / 2; var r = 1 / t; var vertices = [ // (±1, ±1, ±1) - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, - 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, - r, - t, 0, - r, t, 0, r, - t, 0, r, t, // (±1/φ, ±φ, 0) - r, - t, 0, - r, t, 0, r, - t, 0, r, t, 0, // (±φ, 0, ±1/φ) - t, 0, - r, t, 0, - r, - t, 0, r, t, 0, r ]; var indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ]; PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); this.type = 'DodecahedronBufferGeometry'; this.parameters = { radius: radius, detail: detail }; } DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry; // TubeGeometry function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) { Geometry.call(this); this.type = 'TubeGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; if ( taper !== undefined ) { console.warn( 'THREE.TubeGeometry: taper has been removed.' ); } var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ); // expose internals this.tangents = bufferGeometry.tangents; this.normals = bufferGeometry.normals; this.binormals = bufferGeometry.binormals; // create geometry this.fromBufferGeometry( bufferGeometry ); this.mergeVertices(); } TubeGeometry.prototype = Object.create( Geometry.prototype ); TubeGeometry.prototype.constructor = TubeGeometry; // TubeBufferGeometry function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) { BufferGeometry.call(this); this.type = 'TubeBufferGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; tubularSegments = tubularSegments || 64; radius = radius || 1; radialSegments = radialSegments || 8; closed = closed || false; var frames = path.computeFrenetFrames( tubularSegments, closed ); // expose internals this.tangents = frames.tangents; this.normals = frames.normals; this.binormals = frames.binormals; // helper variables var vertex = new Vector3(); var normal = new Vector3(); var uv = new Vector2(); var P = new Vector3(); // buffer var vertices = []; var normals = []; var uvs = []; var indices = []; // create buffer data generateBufferData(); // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // functions function generateBufferData() { for ( var i = 0; i < tubularSegments; i ++ ) { generateSegment( i ); } // if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) generateSegment( ( closed === false ) ? tubularSegments : 0 ); // uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries generateUVs(); // finally create faces generateIndices(); } function generateSegment( i ) { // we use getPointAt to sample evenly distributed points from the given path P = path.getPointAt( i / tubularSegments, P ); // retrieve corresponding normal and binormal var N = frames.normals[ i ]; var B = frames.binormals[ i ]; // generate normals and vertices for the current segment for ( var j = 0; j <= radialSegments; j ++ ) { var v = j / radialSegments * Math.PI * 2; var sin = Math.sin( v ); var cos = - Math.cos( v ); // normal normal.x = ( cos * N.x + sin * B.x ); normal.y = ( cos * N.y + sin * B.y ); normal.z = ( cos * N.z + sin * B.z ); normal.normalize(); normals.push( normal.x, normal.y, normal.z ); // vertex vertex.x = P.x + radius * normal.x; vertex.y = P.y + radius * normal.y; vertex.z = P.z + radius * normal.z; vertices.push( vertex.x, vertex.y, vertex.z ); } } function generateIndices() { for ( var j = 1; j <= tubularSegments; j ++ ) { for ( var i = 1; i <= radialSegments; i ++ ) { var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); var b = ( radialSegments + 1 ) * j + ( i - 1 ); var c = ( radialSegments + 1 ) * j + i; var d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } } function generateUVs() { for ( var i = 0; i <= tubularSegments; i ++ ) { for ( var j = 0; j <= radialSegments; j ++ ) { uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.push( uv.x, uv.y ); } } } } TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TubeBufferGeometry.prototype.constructor = TubeBufferGeometry; TubeBufferGeometry.prototype.toJSON = function toJSON () { var data = BufferGeometry.prototype.toJSON.call( this ); data.path = this.parameters.path.toJSON(); return data; }; // TorusKnotGeometry function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) { Geometry.call(this); this.type = 'TorusKnotGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; if ( heightScale !== undefined ) { console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' ); } this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) ); this.mergeVertices(); } TorusKnotGeometry.prototype = Object.create( Geometry.prototype ); TorusKnotGeometry.prototype.constructor = TorusKnotGeometry; // TorusKnotBufferGeometry function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) { BufferGeometry.call(this); this.type = 'TorusKnotBufferGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; radius = radius || 1; tube = tube || 0.4; tubularSegments = Math.floor( tubularSegments ) || 64; radialSegments = Math.floor( radialSegments ) || 8; p = p || 2; q = q || 3; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var vertex = new Vector3(); var normal = new Vector3(); var P1 = new Vector3(); var P2 = new Vector3(); var B = new Vector3(); var T = new Vector3(); var N = new Vector3(); // generate vertices, normals and uvs for ( var i = 0; i <= tubularSegments; ++ i ) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segement var u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve( u, p, q, radius, P1 ); calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); // calculate orthonormal basis T.subVectors( P2, P1 ); N.addVectors( P2, P1 ); B.crossVectors( T, N ); N.crossVectors( B, T ); // normalize B, N. T can be ignored, we don't use it B.normalize(); N.normalize(); for ( var j = 0; j <= radialSegments; ++ j ) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. var v = j / radialSegments * Math.PI * 2; var cx = - tube * Math.cos( v ); var cy = tube * Math.sin( v ); // now calculate the final vertex position. // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve vertex.x = P1.x + ( cx * N.x + cy * B.x ); vertex.y = P1.y + ( cx * N.y + cy * B.y ); vertex.z = P1.z + ( cx * N.z + cy * B.z ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors( vertex, P1 ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( i / tubularSegments ); uvs.push( j / radialSegments ); } } // generate indices for ( var j$1 = 1; j$1 <= tubularSegments; j$1 ++ ) { for ( var i$1 = 1; i$1 <= radialSegments; i$1 ++ ) { // indices var a = ( radialSegments + 1 ) * ( j$1 - 1 ) + ( i$1 - 1 ); var b = ( radialSegments + 1 ) * j$1 + ( i$1 - 1 ); var c = ( radialSegments + 1 ) * j$1 + i$1; var d = ( radialSegments + 1 ) * ( j$1 - 1 ) + i$1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // this function calculates the current position on the torus curve function calculatePositionOnCurve( u, p, q, radius, position ) { var cu = Math.cos( u ); var su = Math.sin( u ); var quOverP = q / p * u; var cs = Math.cos( quOverP ); position.x = radius * ( 2 + cs ) * 0.5 * cu; position.y = radius * ( 2 + cs ) * su * 0.5; position.z = radius * Math.sin( quOverP ) * 0.5; } } TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry; // TorusGeometry function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) { Geometry.call(this); this.type = 'TorusGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) ); this.mergeVertices(); } TorusGeometry.prototype = Object.create( Geometry.prototype ); TorusGeometry.prototype.constructor = TorusGeometry; // TorusBufferGeometry function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) { BufferGeometry.call(this); this.type = 'TorusBufferGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; radius = radius || 1; tube = tube || 0.4; radialSegments = Math.floor( radialSegments ) || 8; tubularSegments = Math.floor( tubularSegments ) || 6; arc = arc || Math.PI * 2; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var center = new Vector3(); var vertex = new Vector3(); var normal = new Vector3(); // generate vertices, normals and uvs for ( var j = 0; j <= radialSegments; j ++ ) { for ( var i = 0; i <= tubularSegments; i ++ ) { var u = i / tubularSegments * arc; var v = j / radialSegments * Math.PI * 2; // vertex vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); vertex.z = tube * Math.sin( v ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal center.x = radius * Math.cos( u ); center.y = radius * Math.sin( u ); normal.subVectors( vertex, center ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( i / tubularSegments ); uvs.push( j / radialSegments ); } } // generate indices for ( var j$1 = 1; j$1 <= radialSegments; j$1 ++ ) { for ( var i$1 = 1; i$1 <= tubularSegments; i$1 ++ ) { // indices var a = ( tubularSegments + 1 ) * j$1 + i$1 - 1; var b = ( tubularSegments + 1 ) * ( j$1 - 1 ) + i$1 - 1; var c = ( tubularSegments + 1 ) * ( j$1 - 1 ) + i$1; var d = ( tubularSegments + 1 ) * j$1 + i$1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TorusBufferGeometry.prototype.constructor = TorusBufferGeometry; /** * Port from https://github.com/mapbox/earcut (v2.2.2) */ var Earcut = { triangulate: function ( data, holeIndices, dim ) { dim = dim || 2; var hasHoles = holeIndices && holeIndices.length; var outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length; var outerNode = linkedList( data, 0, outerLen, dim, true ); var triangles = []; if ( ! outerNode || outerNode.next === outerNode.prev ) { return triangles; } var minX, minY, maxX, maxY, x, y, invSize; if ( hasHoles ) { outerNode = eliminateHoles( data, holeIndices, outerNode, dim ); } // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if ( data.length > 80 * dim ) { minX = maxX = data[ 0 ]; minY = maxY = data[ 1 ]; for ( var i = dim; i < outerLen; i += dim ) { x = data[ i ]; y = data[ i + 1 ]; if ( x < minX ) { minX = x; } if ( y < minY ) { minY = y; } if ( x > maxX ) { maxX = x; } if ( y > maxY ) { maxY = y; } } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max( maxX - minX, maxY - minY ); invSize = invSize !== 0 ? 1 / invSize : 0; } earcutLinked( outerNode, triangles, dim, minX, minY, invSize ); return triangles; } }; // create a circular doubly linked list from polygon points in the specified winding order function linkedList( data, start, end, dim, clockwise ) { var i, last; if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) { for ( i = start; i < end; i += dim ) { last = insertNode( i, data[ i ], data[ i + 1 ], last ); } } else { for ( i = end - dim; i >= start; i -= dim ) { last = insertNode( i, data[ i ], data[ i + 1 ], last ); } } if ( last && equals( last, last.next ) ) { removeNode( last ); last = last.next; } return last; } // eliminate colinear or duplicate points function filterPoints( start, end ) { if ( ! start ) { return start; } if ( ! end ) { end = start; } var p = start, again; do { again = false; if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) { removeNode( p ); p = end = p.prev; if ( p === p.next ) { break; } again = true; } else { p = p.next; } } while ( again || p !== end ); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) { if ( ! ear ) { return; } // interlink polygon nodes in z-order if ( ! pass && invSize ) { indexCurve( ear, minX, minY, invSize ); } var stop = ear, prev, next; // iterate through ears, slicing them one by one while ( ear.prev !== ear.next ) { prev = ear.prev; next = ear.next; if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) { // cut off the triangle triangles.push( prev.i / dim ); triangles.push( ear.i / dim ); triangles.push( next.i / dim ); removeNode( ear ); // skipping the next vertex leads to less sliver triangles ear = next.next; stop = next.next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if ( ear === stop ) { // try filtering points and slicing again if ( ! pass ) { earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 ); // if this didn't work, try curing all small self-intersections locally } else if ( pass === 1 ) { ear = cureLocalIntersections( filterPoints( ear ), triangles, dim ); earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 ); // as a last resort, try splitting the remaining polygon into two } else if ( pass === 2 ) { splitEarcut( ear, triangles, dim, minX, minY, invSize ); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar( ear ) { var a = ear.prev, b = ear, c = ear.next; if ( area( a, b, c ) >= 0 ) { return false; } // reflex, can't be an ear // now make sure we don't have other points inside the potential ear var p = ear.next.next; while ( p !== ear.prev ) { if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) { return false; } p = p.next; } return true; } function isEarHashed( ear, minX, minY, invSize ) { var a = ear.prev, b = ear, c = ear.next; if ( area( a, b, c ) >= 0 ) { return false; } // reflex, can't be an ear // triangle bbox; min & max are calculated like this for speed var minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ), minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ), maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ), maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y ); // z-order range for the current triangle bbox; var minZ = zOrder( minTX, minTY, minX, minY, invSize ), maxZ = zOrder( maxTX, maxTY, minX, minY, invSize ); var p = ear.prevZ, n = ear.nextZ; // look for points inside the triangle in both directions while ( p && p.z >= minZ && n && n.z <= maxZ ) { if ( p !== ear.prev && p !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) { return false; } p = p.prevZ; if ( n !== ear.prev && n !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) { return false; } n = n.nextZ; } // look for remaining points in decreasing z-order while ( p && p.z >= minZ ) { if ( p !== ear.prev && p !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) { return false; } p = p.prevZ; } // look for remaining points in increasing z-order while ( n && n.z <= maxZ ) { if ( n !== ear.prev && n !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) { return false; } n = n.nextZ; } return true; } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections( start, triangles, dim ) { var p = start; do { var a = p.prev, b = p.next.next; if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) { triangles.push( a.i / dim ); triangles.push( p.i / dim ); triangles.push( b.i / dim ); // remove two nodes involved removeNode( p ); removeNode( p.next ); p = start = b; } p = p.next; } while ( p !== start ); return filterPoints( p ); } // try splitting polygon into two and triangulate them independently function splitEarcut( start, triangles, dim, minX, minY, invSize ) { // look for a valid diagonal that divides the polygon into two var a = start; do { var b = a.next.next; while ( b !== a.prev ) { if ( a.i !== b.i && isValidDiagonal( a, b ) ) { // split the polygon in two by the diagonal var c = splitPolygon( a, b ); // filter colinear points around the cuts a = filterPoints( a, a.next ); c = filterPoints( c, c.next ); // run earcut on each half earcutLinked( a, triangles, dim, minX, minY, invSize ); earcutLinked( c, triangles, dim, minX, minY, invSize ); return; } b = b.next; } a = a.next; } while ( a !== start ); } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles( data, holeIndices, outerNode, dim ) { var queue = []; var i, len, start, end, list; for ( i = 0, len = holeIndices.length; i < len; i ++ ) { start = holeIndices[ i ] * dim; end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length; list = linkedList( data, start, end, dim, false ); if ( list === list.next ) { list.steiner = true; } queue.push( getLeftmost( list ) ); } queue.sort( compareX ); // process holes from left to right for ( i = 0; i < queue.length; i ++ ) { eliminateHole( queue[ i ], outerNode ); outerNode = filterPoints( outerNode, outerNode.next ); } return outerNode; } function compareX( a, b ) { return a.x - b.x; } // find a bridge between vertices that connects hole with an outer ring and and link it function eliminateHole( hole, outerNode ) { outerNode = findHoleBridge( hole, outerNode ); if ( outerNode ) { var b = splitPolygon( outerNode, hole ); // filter collinear points around the cuts filterPoints( outerNode, outerNode.next ); filterPoints( b, b.next ); } } // David Eberly's algorithm for finding a bridge between hole and outer polygon function findHoleBridge( hole, outerNode ) { var p = outerNode; var hx = hole.x; var hy = hole.y; var qx = - Infinity, m; // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) { var x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y ); if ( x <= hx && x > qx ) { qx = x; if ( x === hx ) { if ( hy === p.y ) { return p; } if ( hy === p.next.y ) { return p.next; } } m = p.x < p.next.x ? p : p.next; } } p = p.next; } while ( p !== outerNode ); if ( ! m ) { return null; } if ( hx === qx ) { return m; } // hole touches outer segment; pick leftmost endpoint // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point var stop = m, mx = m.x, my = m.y; var tanMin = Infinity, tan; p = m; do { if ( hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) { tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) { m = p; tanMin = tan; } } p = p.next; } while ( p !== stop ); return m; } // whether sector in vertex m contains sector in vertex p in the same coordinates function sectorContainsSector( m, p ) { return area( m.prev, m, p.prev ) < 0 && area( p.next, m, m.next ) < 0; } // interlink polygon nodes in z-order function indexCurve( start, minX, minY, invSize ) { var p = start; do { if ( p.z === null ) { p.z = zOrder( p.x, p.y, minX, minY, invSize ); } p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while ( p !== start ); p.prevZ.nextZ = null; p.prevZ = null; sortLinked( p ); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked( list ) { var i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1; do { p = list; list = null; tail = null; numMerges = 0; while ( p ) { numMerges ++; q = p; pSize = 0; for ( i = 0; i < inSize; i ++ ) { pSize ++; q = q.nextZ; if ( ! q ) { break; } } qSize = inSize; while ( pSize > 0 || ( qSize > 0 && q ) ) { if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) { e = p; p = p.nextZ; pSize --; } else { e = q; q = q.nextZ; qSize --; } if ( tail ) { tail.nextZ = e; } else { list = e; } e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while ( numMerges > 1 ); return list; } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder( x, y, minX, minY, invSize ) { // coords are transformed into non-negative 15-bit integer range x = 32767 * ( x - minX ) * invSize; y = 32767 * ( y - minY ) * invSize; x = ( x | ( x << 8 ) ) & 0x00FF00FF; x = ( x | ( x << 4 ) ) & 0x0F0F0F0F; x = ( x | ( x << 2 ) ) & 0x33333333; x = ( x | ( x << 1 ) ) & 0x55555555; y = ( y | ( y << 8 ) ) & 0x00FF00FF; y = ( y | ( y << 4 ) ) & 0x0F0F0F0F; y = ( y | ( y << 2 ) ) & 0x33333333; y = ( y | ( y << 1 ) ) & 0x55555555; return x | ( y << 1 ); } // find the leftmost node of a polygon ring function getLeftmost( start ) { var p = start, leftmost = start; do { if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) { leftmost = p; } p = p.next; } while ( p !== start ); return leftmost; } // check if a point lies within a convex triangle function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) { return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 && ( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 && ( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0; } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal( a, b ) { return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // dones't intersect other edges ( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible ( area( a.prev, a, b.prev ) || area( a, b.prev, b ) ) || // does not create opposite-facing sectors equals( a, b ) && area( a.prev, a, a.next ) > 0 && area( b.prev, b, b.next ) > 0 ); // special zero-length case } // signed area of a triangle function area( p, q, r ) { return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y ); } // check if two points are equal function equals( p1, p2 ) { return p1.x === p2.x && p1.y === p2.y; } // check if two segments intersect function intersects( p1, q1, p2, q2 ) { var o1 = sign( area( p1, q1, p2 ) ); var o2 = sign( area( p1, q1, q2 ) ); var o3 = sign( area( p2, q2, p1 ) ); var o4 = sign( area( p2, q2, q1 ) ); if ( o1 !== o2 && o3 !== o4 ) { return true; } // general case if ( o1 === 0 && onSegment( p1, p2, q1 ) ) { return true; } // p1, q1 and p2 are collinear and p2 lies on p1q1 if ( o2 === 0 && onSegment( p1, q2, q1 ) ) { return true; } // p1, q1 and q2 are collinear and q2 lies on p1q1 if ( o3 === 0 && onSegment( p2, p1, q2 ) ) { return true; } // p2, q2 and p1 are collinear and p1 lies on p2q2 if ( o4 === 0 && onSegment( p2, q1, q2 ) ) { return true; } // p2, q2 and q1 are collinear and q1 lies on p2q2 return false; } // for collinear points p, q, r, check if point q lies on segment pr function onSegment( p, q, r ) { return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y ); } function sign( num ) { return num > 0 ? 1 : num < 0 ? - 1 : 0; } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon( a, b ) { var p = a; do { if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects( p, p.next, a, b ) ) { return true; } p = p.next; } while ( p !== a ); return false; } // check if a polygon diagonal is locally inside the polygon function locallyInside( a, b ) { return area( a.prev, a, a.next ) < 0 ? area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 : area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0; } // check if the middle point of a polygon diagonal is inside the polygon function middleInside( a, b ) { var p = a, inside = false; var px = ( a.x + b.x ) / 2, py = ( a.y + b.y ) / 2; do { if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y && ( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) ) { inside = ! inside; } p = p.next; } while ( p !== a ); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon( a, b ) { var a2 = new Node( a.i, a.x, a.y ), b2 = new Node( b.i, b.x, b.y ), an = a.next, bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode( i, x, y, last ) { var p = new Node( i, x, y ); if ( ! last ) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } function removeNode( p ) { p.next.prev = p.prev; p.prev.next = p.next; if ( p.prevZ ) { p.prevZ.nextZ = p.nextZ; } if ( p.nextZ ) { p.nextZ.prevZ = p.prevZ; } } function Node( i, x, y ) { // vertex index in coordinates array this.i = i; // vertex coordinates this.x = x; this.y = y; // previous and next vertex nodes in a polygon ring this.prev = null; this.next = null; // z-order curve value this.z = null; // previous and next nodes in z-order this.prevZ = null; this.nextZ = null; // indicates whether this is a steiner point this.steiner = false; } function signedArea( data, start, end, dim ) { var sum = 0; for ( var i = start, j = end - dim; i < end; i += dim ) { sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] ); j = i; } return sum; } var ShapeUtils = { // calculate area of the contour polygon area: function ( contour ) { var n = contour.length; var a = 0.0; for ( var p = n - 1, q = 0; q < n; p = q ++ ) { a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; } return a * 0.5; }, isClockWise: function ( pts ) { return ShapeUtils.area( pts ) < 0; }, triangulateShape: function ( contour, holes ) { var vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] var holeIndices = []; // array of hole indices var faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] removeDupEndPts( contour ); addContour( vertices, contour ); // var holeIndex = contour.length; holes.forEach( removeDupEndPts ); for ( var i = 0; i < holes.length; i ++ ) { holeIndices.push( holeIndex ); holeIndex += holes[ i ].length; addContour( vertices, holes[ i ] ); } // var triangles = Earcut.triangulate( vertices, holeIndices ); // for ( var i$1 = 0; i$1 < triangles.length; i$1 += 3 ) { faces.push( triangles.slice( i$1, i$1 + 3 ) ); } return faces; } }; function removeDupEndPts( points ) { var l = points.length; if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) { points.pop(); } } function addContour( vertices, contour ) { for ( var i = 0; i < contour.length; i ++ ) { vertices.push( contour[ i ].x ); vertices.push( contour[ i ].y ); } } /** * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * depth: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline (including bevelOffset) is bevel * bevelOffset: , // how far from shape outline does bevel start * bevelSegments: , // number of bevel layers * * extrudePath: // curve to extrude shape along * * UVGenerator: // object that provides UV generator functions * * } */ // ExtrudeGeometry function ExtrudeGeometry( shapes, options ) { Geometry.call(this); this.type = 'ExtrudeGeometry'; this.parameters = { shapes: shapes, options: options }; this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) ); this.mergeVertices(); } ExtrudeGeometry.prototype = Object.create( Geometry.prototype ); ExtrudeGeometry.prototype.constructor = ExtrudeGeometry; ExtrudeGeometry.prototype.toJSON = function toJSON$1 () { var data = Geometry.prototype.toJSON.call(this); var shapes = this.parameters.shapes; var options = this.parameters.options; return toJSON( shapes, options, data ); }; // ExtrudeBufferGeometry function ExtrudeBufferGeometry( shapes, options ) { BufferGeometry.call(this); this.type = 'ExtrudeBufferGeometry'; this.parameters = { shapes: shapes, options: options }; shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; var scope = this; var verticesArray = []; var uvArray = []; for ( var i = 0, l = shapes.length; i < l; i ++ ) { var shape = shapes[ i ]; addShape( shape ); } // build geometry this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) ); this.computeVertexNormals(); // functions function addShape( shape ) { var placeholder = []; // options var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var steps = options.steps !== undefined ? options.steps : 1; var depth = options.depth !== undefined ? options.depth : 100; var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; var bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; var extrudePath = options.extrudePath; var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options if ( options.amount !== undefined ) { console.warn( 'THREE.ExtrudeBufferGeometry: amount has been renamed to depth.' ); depth = options.amount; } // var extrudePts, extrudeByPath = false; var splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = extrudePath.computeFrenetFrames( steps, false ); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; bevelOffset = 0; } // Variables initialization var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( var h = 0, hl = holes.length; h < hl; h ++ ) { var ahole = holes[ h ]; if ( ShapeUtils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } } var faces = ShapeUtils.triangulateShape( vertices, holes ); /* Vertices */ var contour = vertices; // vertices has all points but contour has only points of circumference for ( var h$1 = 0, hl$1 = holes.length; h$1 < hl$1; h$1 ++ ) { var ahole$1 = holes[ h$1 ]; vertices = vertices.concat( ahole$1 ); } function scalePt2( pt, vec, size ) { if ( ! vec ) { console.error( "THREE.ExtrudeGeometry: vec does not exist" ); } return vec.clone().multiplyScalar( size ).add( pt ); } var vlen = vertices.length, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. var v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for collinear edges var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( collinear0 ) > Number.EPSILON ) { // not collinear // length of vectors for normalizing var v_prev_len = Math.sqrt( v_prev_lensq ); var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); var ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); var ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) { return new Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of collinear edges var direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) { if ( v_next_x > Number.EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - Number.EPSILON ) { if ( v_next_x < - Number.EPSILON ) { direction_eq = true; } } else { if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } var contourMovements = []; for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) { j = 0; } if ( k === il ) { k = 0; } // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } var holesMovements = []; var oneHoleMovements, verticesMovements = contourMovements.concat(); for ( var h$2 = 0, hl$2 = holes.length; h$2 < hl$2; h$2 ++ ) { var ahole$2 = holes[ h$2 ]; oneHoleMovements = []; for ( var i$1 = 0, il$1 = ahole$2.length, j$1 = il$1 - 1, k$1 = i$1 + 1; i$1 < il$1; i$1 ++, j$1 ++, k$1 ++ ) { if ( j$1 === il$1 ) { j$1 = 0; } if ( k$1 === il$1 ) { k$1 = 0; } // (j)---(i)---(k) oneHoleMovements[ i$1 ] = getBevelVec( ahole$2[ i$1 ], ahole$2[ j$1 ], ahole$2[ k$1 ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( var b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { var t = b / bevelSegments; var z = bevelThickness * Math.cos( t * Math.PI / 2 ); var bs$1 = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; // contract shape for ( var i$2 = 0, il$2 = contour.length; i$2 < il$2; i$2 ++ ) { var vert = scalePt2( contour[ i$2 ], contourMovements[ i$2 ], bs$1 ); v( vert.x, vert.y, - z ); } // expand holes for ( var h$3 = 0, hl$3 = holes.length; h$3 < hl$3; h$3 ++ ) { var ahole$3 = holes[ h$3 ]; oneHoleMovements = holesMovements[ h$3 ]; for ( var i$3 = 0, il$3 = ahole$3.length; i$3 < il$3; i$3 ++ ) { var vert$1 = scalePt2( ahole$3[ i$3 ], oneHoleMovements[ i$3 ], bs$1 ); v( vert$1.x, vert$1.y, - z ); } } } var bs = bevelSize + bevelOffset; // Back facing vertices for ( var i$4 = 0; i$4 < vlen; i$4 ++ ) { var vert$2 = bevelEnabled ? scalePt2( vertices[ i$4 ], verticesMovements[ i$4 ], bs ) : vertices[ i$4 ]; if ( ! extrudeByPath ) { v( vert$2.x, vert$2.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert$2.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert$2.y ); position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices for ( var s = 1; s <= steps; s ++ ) { for ( var i$5 = 0; i$5 < vlen; i$5 ++ ) { var vert$3 = bevelEnabled ? scalePt2( vertices[ i$5 ], verticesMovements[ i$5 ], bs ) : vertices[ i$5 ]; if ( ! extrudeByPath ) { v( vert$3.x, vert$3.y, depth / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert$3.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert$3.y ); position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( var b$1 = bevelSegments - 1; b$1 >= 0; b$1 -- ) { var t$1 = b$1 / bevelSegments; var z$1 = bevelThickness * Math.cos( t$1 * Math.PI / 2 ); var bs$2 = bevelSize * Math.sin( t$1 * Math.PI / 2 ) + bevelOffset; // contract shape for ( var i$6 = 0, il$4 = contour.length; i$6 < il$4; i$6 ++ ) { var vert$4 = scalePt2( contour[ i$6 ], contourMovements[ i$6 ], bs$2 ); v( vert$4.x, vert$4.y, depth + z$1 ); } // expand holes for ( var h$4 = 0, hl$4 = holes.length; h$4 < hl$4; h$4 ++ ) { var ahole$4 = holes[ h$4 ]; oneHoleMovements = holesMovements[ h$4 ]; for ( var i$7 = 0, il$5 = ahole$4.length; i$7 < il$5; i$7 ++ ) { var vert$5 = scalePt2( ahole$4[ i$7 ], oneHoleMovements[ i$7 ], bs$2 ); if ( ! extrudeByPath ) { v( vert$5.x, vert$5.y, depth + z$1 ); } else { v( vert$5.x, vert$5.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z$1 ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { var start = verticesArray.length / 3; if ( bevelEnabled ) { var layer = 0; // steps + 1 var offset = vlen * layer; // Bottom faces for ( var i = 0; i < flen; i ++ ) { var face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( var i$1 = 0; i$1 < flen; i$1 ++ ) { var face$1 = faces[ i$1 ]; f3( face$1[ 0 ] + offset, face$1[ 1 ] + offset, face$1[ 2 ] + offset ); } } else { // Bottom faces for ( var i$2 = 0; i$2 < flen; i$2 ++ ) { var face$2 = faces[ i$2 ]; f3( face$2[ 2 ], face$2[ 1 ], face$2[ 0 ] ); } // Top faces for ( var i$3 = 0; i$3 < flen; i$3 ++ ) { var face$3 = faces[ i$3 ]; f3( face$3[ 0 ] + vlen * steps, face$3[ 1 ] + vlen * steps, face$3[ 2 ] + vlen * steps ); } } scope.addGroup( start, verticesArray.length / 3 - start, 0 ); } // Create faces for the z-sides of the shape function buildSideFaces() { var start = verticesArray.length / 3; var layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( var h = 0, hl = holes.length; h < hl; h ++ ) { var ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } scope.addGroup( start, verticesArray.length / 3 - start, 1 ); } function sidewalls( contour, layeroffset ) { var i = contour.length; while ( -- i >= 0 ) { var j = i; var k = i - 1; if ( k < 0 ) { k = contour.length - 1; } //console.log('b', i,j, i-1, k,vertices.length); for ( var s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) { var slen1 = vlen * s; var slen2 = vlen * ( s + 1 ); var a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d ); } } } function v( x, y, z ) { placeholder.push( x ); placeholder.push( y ); placeholder.push( z ); } function f3( a, b, c ) { addVertex( a ); addVertex( b ); addVertex( c ); var nextIndex = verticesArray.length / 3; var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); } function f4( a, b, c, d ) { addVertex( a ); addVertex( b ); addVertex( d ); addVertex( b ); addVertex( c ); addVertex( d ); var nextIndex = verticesArray.length / 3; var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 3 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); addUV( uvs[ 3 ] ); } function addVertex( index ) { verticesArray.push( placeholder[ index * 3 + 0 ] ); verticesArray.push( placeholder[ index * 3 + 1 ] ); verticesArray.push( placeholder[ index * 3 + 2 ] ); } function addUV( vector2 ) { uvArray.push( vector2.x ); uvArray.push( vector2.y ); } } } ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry; ExtrudeBufferGeometry.prototype.toJSON = function toJSON$2 () { var data = BufferGeometry.prototype.toJSON.call( this ); var shapes = this.parameters.shapes; var options = this.parameters.options; return toJSON( shapes, options, data ); }; var WorldUVGenerator = { generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) { var a_x = vertices[ indexA * 3 ]; var a_y = vertices[ indexA * 3 + 1 ]; var b_x = vertices[ indexB * 3 ]; var b_y = vertices[ indexB * 3 + 1 ]; var c_x = vertices[ indexC * 3 ]; var c_y = vertices[ indexC * 3 + 1 ]; return [ new Vector2( a_x, a_y ), new Vector2( b_x, b_y ), new Vector2( c_x, c_y ) ]; }, generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) { var a_x = vertices[ indexA * 3 ]; var a_y = vertices[ indexA * 3 + 1 ]; var a_z = vertices[ indexA * 3 + 2 ]; var b_x = vertices[ indexB * 3 ]; var b_y = vertices[ indexB * 3 + 1 ]; var b_z = vertices[ indexB * 3 + 2 ]; var c_x = vertices[ indexC * 3 ]; var c_y = vertices[ indexC * 3 + 1 ]; var c_z = vertices[ indexC * 3 + 2 ]; var d_x = vertices[ indexD * 3 ]; var d_y = vertices[ indexD * 3 + 1 ]; var d_z = vertices[ indexD * 3 + 2 ]; if ( Math.abs( a_y - b_y ) < 0.01 ) { return [ new Vector2( a_x, 1 - a_z ), new Vector2( b_x, 1 - b_z ), new Vector2( c_x, 1 - c_z ), new Vector2( d_x, 1 - d_z ) ]; } else { return [ new Vector2( a_y, 1 - a_z ), new Vector2( b_y, 1 - b_z ), new Vector2( c_y, 1 - c_z ), new Vector2( d_y, 1 - d_z ) ]; } } }; function toJSON( shapes, options, data ) { data.shapes = []; if ( Array.isArray( shapes ) ) { for ( var i = 0, l = shapes.length; i < l; i ++ ) { var shape = shapes[ i ]; data.shapes.push( shape.uuid ); } } else { data.shapes.push( shapes.uuid ); } if ( options.extrudePath !== undefined ) { data.options.extrudePath = options.extrudePath.toJSON(); } return data; } /** * Text = 3D Text * * parameters = { * font: , // font * * size: , // size of the text * height: , // thickness to extrude text * curveSegments: , // number of points on the curves * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into text bevel goes * bevelSize: , // how far from text outline (including bevelOffset) is bevel * bevelOffset: // how far from text outline does bevel start * } */ // TextGeometry function TextGeometry( text, parameters ) { Geometry.call(this); this.type = 'TextGeometry'; this.parameters = { text: text, parameters: parameters }; this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) ); this.mergeVertices(); } TextGeometry.prototype = Object.create( Geometry.prototype ); TextGeometry.prototype.constructor = TextGeometry; // TextBufferGeometry function TextBufferGeometry( text, parameters ) { parameters = parameters || {}; var font = parameters.font; if ( ! ( font && font.isFont ) ) { console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' ); return new Geometry(); } var shapes = font.generateShapes( text, parameters.size ); // translate parameters to ExtrudeGeometry API parameters.depth = parameters.height !== undefined ? parameters.height : 50; // defaults if ( parameters.bevelThickness === undefined ) { parameters.bevelThickness = 10; } if ( parameters.bevelSize === undefined ) { parameters.bevelSize = 8; } if ( parameters.bevelEnabled === undefined ) { parameters.bevelEnabled = false; } ExtrudeBufferGeometry.call( this, shapes, parameters ); this.type = 'TextBufferGeometry'; } TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype ); TextBufferGeometry.prototype.constructor = TextBufferGeometry; // SphereGeometry function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { Geometry.call(this); this.type = 'SphereGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) ); this.mergeVertices(); } SphereGeometry.prototype = Object.create( Geometry.prototype ); SphereGeometry.prototype.constructor = SphereGeometry; // SphereBufferGeometry function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { BufferGeometry.call(this); this.type = 'SphereBufferGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 1; widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 ); heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 ); phiStart = phiStart !== undefined ? phiStart : 0; phiLength = phiLength !== undefined ? phiLength : Math.PI * 2; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI; var thetaEnd = Math.min( thetaStart + thetaLength, Math.PI ); var index = 0; var grid = []; var vertex = new Vector3(); var normal = new Vector3(); // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // generate vertices, normals and uvs for ( var iy = 0; iy <= heightSegments; iy ++ ) { var verticesRow = []; var v = iy / heightSegments; // special case for the poles var uOffset = 0; if ( iy == 0 && thetaStart == 0 ) { uOffset = 0.5 / widthSegments; } else if ( iy == heightSegments && thetaEnd == Math.PI ) { uOffset = - 0.5 / widthSegments; } for ( var ix = 0; ix <= widthSegments; ix ++ ) { var u = ix / widthSegments; // vertex vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertex.y = radius * Math.cos( thetaStart + v * thetaLength ); vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.copy( vertex ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u + uOffset, 1 - v ); verticesRow.push( index ++ ); } grid.push( verticesRow ); } // indices for ( var iy$1 = 0; iy$1 < heightSegments; iy$1 ++ ) { for ( var ix$1 = 0; ix$1 < widthSegments; ix$1 ++ ) { var a = grid[ iy$1 ][ ix$1 + 1 ]; var b = grid[ iy$1 ][ ix$1 ]; var c = grid[ iy$1 + 1 ][ ix$1 ]; var d = grid[ iy$1 + 1 ][ ix$1 + 1 ]; if ( iy$1 !== 0 || thetaStart > 0 ) { indices.push( a, b, d ); } if ( iy$1 !== heightSegments - 1 || thetaEnd < Math.PI ) { indices.push( b, c, d ); } } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); SphereBufferGeometry.prototype.constructor = SphereBufferGeometry; // RingGeometry function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { Geometry.call(this); this.type = 'RingGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) ); this.mergeVertices(); } RingGeometry.prototype = Object.create( Geometry.prototype ); RingGeometry.prototype.constructor = RingGeometry; // RingBufferGeometry function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { BufferGeometry.call(this); this.type = 'RingBufferGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; innerRadius = innerRadius || 0.5; outerRadius = outerRadius || 1; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8; phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // some helper variables var radius = innerRadius; var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); var vertex = new Vector3(); var uv = new Vector2(); // generate vertices, normals and uvs for ( var j = 0; j <= phiSegments; j ++ ) { for ( var i = 0; i <= thetaSegments; i ++ ) { // values are generate from the inside of the ring to the outside var segment = thetaStart + i / thetaSegments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, 0, 1 ); // uv uv.x = ( vertex.x / outerRadius + 1 ) / 2; uv.y = ( vertex.y / outerRadius + 1 ) / 2; uvs.push( uv.x, uv.y ); } // increase the radius for next row of vertices radius += radiusStep; } // indices for ( var j$1 = 0; j$1 < phiSegments; j$1 ++ ) { var thetaSegmentLevel = j$1 * ( thetaSegments + 1 ); for ( var i$1 = 0; i$1 < thetaSegments; i$1 ++ ) { var segment$1 = i$1 + thetaSegmentLevel; var a = segment$1; var b = segment$1 + thetaSegments + 1; var c = segment$1 + thetaSegments + 2; var d = segment$1 + 1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); RingBufferGeometry.prototype.constructor = RingBufferGeometry; // LatheGeometry function LatheGeometry( points, segments, phiStart, phiLength ) { Geometry.call(this); this.type = 'LatheGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) ); this.mergeVertices(); } LatheGeometry.prototype = Object.create( Geometry.prototype ); LatheGeometry.prototype.constructor = LatheGeometry; // LatheBufferGeometry function LatheBufferGeometry( points, segments, phiStart, phiLength ) { BufferGeometry.call(this); this.type = 'LatheBufferGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; segments = Math.floor( segments ) || 12; phiStart = phiStart || 0; phiLength = phiLength || Math.PI * 2; // clamp phiLength so it's in range of [ 0, 2PI ] phiLength = MathUtils.clamp( phiLength, 0, Math.PI * 2 ); // buffers var indices = []; var vertices = []; var uvs = []; // helper variables var inverseSegments = 1.0 / segments; var vertex = new Vector3(); var uv = new Vector2(); // generate vertices and uvs for ( var i = 0; i <= segments; i ++ ) { var phi = phiStart + i * inverseSegments * phiLength; var sin = Math.sin( phi ); var cos = Math.cos( phi ); for ( var j = 0; j <= ( points.length - 1 ); j ++ ) { // vertex vertex.x = points[ j ].x * sin; vertex.y = points[ j ].y; vertex.z = points[ j ].x * cos; vertices.push( vertex.x, vertex.y, vertex.z ); // uv uv.x = i / segments; uv.y = j / ( points.length - 1 ); uvs.push( uv.x, uv.y ); } } // indices for ( var i$1 = 0; i$1 < segments; i$1 ++ ) { for ( var j$1 = 0; j$1 < ( points.length - 1 ); j$1 ++ ) { var base = j$1 + i$1 * points.length; var a = base; var b = base + points.length; var c = base + points.length + 1; var d = base + 1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // generate normals this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam. // because the corresponding vertices are identical (but still have different UVs). if ( phiLength === Math.PI * 2 ) { var normals = this.attributes.normal.array; var n1 = new Vector3(); var n2 = new Vector3(); var n = new Vector3(); // this is the buffer offset for the last line of vertices var base$1 = segments * points.length * 3; for ( var i$2 = 0, j$2 = 0; i$2 < points.length; i$2 ++, j$2 += 3 ) { // select the normal of the vertex in the first line n1.x = normals[ j$2 + 0 ]; n1.y = normals[ j$2 + 1 ]; n1.z = normals[ j$2 + 2 ]; // select the normal of the vertex in the last line n2.x = normals[ base$1 + j$2 + 0 ]; n2.y = normals[ base$1 + j$2 + 1 ]; n2.z = normals[ base$1 + j$2 + 2 ]; // average normals n.addVectors( n1, n2 ).normalize(); // assign the new values to both normals normals[ j$2 + 0 ] = normals[ base$1 + j$2 + 0 ] = n.x; normals[ j$2 + 1 ] = normals[ base$1 + j$2 + 1 ] = n.y; normals[ j$2 + 2 ] = normals[ base$1 + j$2 + 2 ] = n.z; } } } LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); LatheBufferGeometry.prototype.constructor = LatheBufferGeometry; // ShapeGeometry function ShapeGeometry( shapes, curveSegments ) { Geometry.call(this); this.type = 'ShapeGeometry'; if ( typeof curveSegments === 'object' ) { console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' ); curveSegments = curveSegments.curveSegments; } this.parameters = { shapes: shapes, curveSegments: curveSegments }; this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) ); this.mergeVertices(); } ShapeGeometry.prototype = Object.create( Geometry.prototype ); ShapeGeometry.prototype.constructor = ShapeGeometry; ShapeGeometry.prototype.toJSON = function toJSON$1$1 () { var data = Geometry.prototype.toJSON.call( this ); var shapes = this.parameters.shapes; return toJSON$1( shapes, data ); }; // ShapeBufferGeometry function ShapeBufferGeometry( shapes, curveSegments ) { BufferGeometry.call(this); this.type = 'ShapeBufferGeometry'; this.parameters = { shapes: shapes, curveSegments: curveSegments }; curveSegments = curveSegments || 12; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var groupStart = 0; var groupCount = 0; // allow single and array values for "shapes" parameter if ( Array.isArray( shapes ) === false ) { addShape( shapes ); } else { for ( var i = 0; i < shapes.length; i ++ ) { addShape( shapes[ i ] ); this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support groupStart += groupCount; groupCount = 0; } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // helper functions function addShape( shape ) { var indexOffset = vertices.length / 3; var points = shape.extractPoints( curveSegments ); var shapeVertices = points.shape; var shapeHoles = points.holes; // check direction of vertices if ( ShapeUtils.isClockWise( shapeVertices ) === false ) { shapeVertices = shapeVertices.reverse(); } for ( var i = 0, l = shapeHoles.length; i < l; i ++ ) { var shapeHole = shapeHoles[ i ]; if ( ShapeUtils.isClockWise( shapeHole ) === true ) { shapeHoles[ i ] = shapeHole.reverse(); } } var faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles ); // join vertices of inner and outer paths to a single array for ( var i$1 = 0, l$1 = shapeHoles.length; i$1 < l$1; i$1 ++ ) { var shapeHole$1 = shapeHoles[ i$1 ]; shapeVertices = shapeVertices.concat( shapeHole$1 ); } // vertices, normals, uvs for ( var i$2 = 0, l$2 = shapeVertices.length; i$2 < l$2; i$2 ++ ) { var vertex = shapeVertices[ i$2 ]; vertices.push( vertex.x, vertex.y, 0 ); normals.push( 0, 0, 1 ); uvs.push( vertex.x, vertex.y ); // world uvs } // incides for ( var i$3 = 0, l$3 = faces.length; i$3 < l$3; i$3 ++ ) { var face = faces[ i$3 ]; var a = face[ 0 ] + indexOffset; var b = face[ 1 ] + indexOffset; var c = face[ 2 ] + indexOffset; indices.push( a, b, c ); groupCount += 3; } } } ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry; ShapeBufferGeometry.prototype.toJSON = function toJSON$2 () { var data = BufferGeometry.prototype.toJSON.call( this ); var shapes = this.parameters.shapes; return toJSON$1( shapes, data ); }; // function toJSON$1( shapes, data ) { data.shapes = []; if ( Array.isArray( shapes ) ) { for ( var i = 0, l = shapes.length; i < l; i ++ ) { var shape = shapes[ i ]; data.shapes.push( shape.uuid ); } } else { data.shapes.push( shapes.uuid ); } return data; } function EdgesGeometry( geometry, thresholdAngle ) { BufferGeometry.call(this); this.type = 'EdgesGeometry'; this.parameters = { thresholdAngle: thresholdAngle }; thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1; // buffer var vertices = []; // helper variables var thresholdDot = Math.cos( MathUtils.DEG2RAD * thresholdAngle ); var edge = [ 0, 0 ], edges = {}; var edge1, edge2, key; var keys = [ 'a', 'b', 'c' ]; // prepare source geometry var geometry2; if ( geometry.isBufferGeometry ) { geometry2 = new Geometry(); geometry2.fromBufferGeometry( geometry ); } else { geometry2 = geometry.clone(); } geometry2.mergeVertices(); geometry2.computeFaceNormals(); var sourceVertices = geometry2.vertices; var faces = geometry2.faces; // now create a data structure where each entry represents an edge with its adjoining faces for ( var i = 0, l = faces.length; i < l; i ++ ) { var face = faces[ i ]; for ( var j = 0; j < 3; j ++ ) { edge1 = face[ keys[ j ] ]; edge2 = face[ keys[ ( j + 1 ) % 3 ] ]; edge[ 0 ] = Math.min( edge1, edge2 ); edge[ 1 ] = Math.max( edge1, edge2 ); key = edge[ 0 ] + ',' + edge[ 1 ]; if ( edges[ key ] === undefined ) { edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined }; } else { edges[ key ].face2 = i; } } } // generate vertices for ( key in edges ) { var e = edges[ key ]; // an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree. if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) { var vertex = sourceVertices[ e.index1 ]; vertices.push( vertex.x, vertex.y, vertex.z ); vertex = sourceVertices[ e.index2 ]; vertices.push( vertex.x, vertex.y, vertex.z ); } } // build geometry this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); } EdgesGeometry.prototype = Object.create( BufferGeometry.prototype ); EdgesGeometry.prototype.constructor = EdgesGeometry; // CylinderGeometry function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { Geometry.call(this); this.type = 'CylinderGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) ); this.mergeVertices(); } CylinderGeometry.prototype = Object.create( Geometry.prototype ); CylinderGeometry.prototype.constructor = CylinderGeometry; // CylinderBufferGeometry function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { BufferGeometry.call(this); this.type = 'CylinderBufferGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; var scope = this; radiusTop = radiusTop !== undefined ? radiusTop : 1; radiusBottom = radiusBottom !== undefined ? radiusBottom : 1; height = height || 1; radialSegments = Math.floor( radialSegments ) || 8; heightSegments = Math.floor( heightSegments ) || 1; openEnded = openEnded !== undefined ? openEnded : false; thetaStart = thetaStart !== undefined ? thetaStart : 0.0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var index = 0; var indexArray = []; var halfHeight = height / 2; var groupStart = 0; // generate geometry generateTorso(); if ( openEnded === false ) { if ( radiusTop > 0 ) { generateCap( true ); } if ( radiusBottom > 0 ) { generateCap( false ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function generateTorso() { var normal = new Vector3(); var vertex = new Vector3(); var groupCount = 0; // this will be used to calculate the normal var slope = ( radiusBottom - radiusTop ) / height; // generate vertices, normals and uvs for ( var y = 0; y <= heightSegments; y ++ ) { var indexRow = []; var v = y / heightSegments; // calculate the radius of the current row var radius = v * ( radiusBottom - radiusTop ) + radiusTop; for ( var x = 0; x <= radialSegments; x ++ ) { var u = x / radialSegments; var theta = u * thetaLength + thetaStart; var sinTheta = Math.sin( theta ); var cosTheta = Math.cos( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = - v * height + halfHeight; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.set( sinTheta, slope, cosTheta ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u, 1 - v ); // save index of vertex in respective row indexRow.push( index ++ ); } // now save vertices of the row in our index array indexArray.push( indexRow ); } // generate indices for ( var x$1 = 0; x$1 < radialSegments; x$1 ++ ) { for ( var y$1 = 0; y$1 < heightSegments; y$1 ++ ) { // we use the index array to access the correct indices var a = indexArray[ y$1 ][ x$1 ]; var b = indexArray[ y$1 + 1 ][ x$1 ]; var c = indexArray[ y$1 + 1 ][ x$1 + 1 ]; var d = indexArray[ y$1 ][ x$1 + 1 ]; // faces indices.push( a, b, d ); indices.push( b, c, d ); // update group counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, 0 ); // calculate new start value for groups groupStart += groupCount; } function generateCap( top ) { // save the index of the first center vertex var centerIndexStart = index; var uv = new Vector2(); var vertex = new Vector3(); var groupCount = 0; var radius = ( top === true ) ? radiusTop : radiusBottom; var sign = ( top === true ) ? 1 : - 1; // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for ( var x = 1; x <= radialSegments; x ++ ) { // vertex vertices.push( 0, halfHeight * sign, 0 ); // normal normals.push( 0, sign, 0 ); // uv uvs.push( 0.5, 0.5 ); // increase index index ++; } // save the index of the last center vertex var centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs for ( var x$1 = 0; x$1 <= radialSegments; x$1 ++ ) { var u = x$1 / radialSegments; var theta = u * thetaLength + thetaStart; var cosTheta = Math.cos( theta ); var sinTheta = Math.sin( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = halfHeight * sign; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, sign, 0 ); // uv uv.x = ( cosTheta * 0.5 ) + 0.5; uv.y = ( sinTheta * 0.5 * sign ) + 0.5; uvs.push( uv.x, uv.y ); // increase index index ++; } // generate indices for ( var x$2 = 0; x$2 < radialSegments; x$2 ++ ) { var c = centerIndexStart + x$2; var i = centerIndexEnd + x$2; if ( top === true ) { // face top indices.push( i, i + 1, c ); } else { // face bottom indices.push( i + 1, i, c ); } groupCount += 3; } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 ); // calculate new start value for groups groupStart += groupCount; } } CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry; // ConeGeometry function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); this.type = 'ConeGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } ConeGeometry.prototype = Object.create( CylinderGeometry.prototype ); ConeGeometry.prototype.constructor = ConeGeometry; // ConeBufferGeometry function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); this.type = 'ConeBufferGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype ); ConeBufferGeometry.prototype.constructor = ConeBufferGeometry; // CircleGeometry function CircleGeometry( radius, segments, thetaStart, thetaLength ) { Geometry.call(this); this.type = 'CircleGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) ); this.mergeVertices(); } CircleGeometry.prototype = Object.create( Geometry.prototype ); CircleGeometry.prototype.constructor = CircleGeometry; // CircleBufferGeometry function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) { BufferGeometry.call(this); this.type = 'CircleBufferGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; radius = radius || 1; segments = segments !== undefined ? Math.max( 3, segments ) : 8; thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; // buffers var indices = []; var vertices = []; var normals = []; var uvs = []; // helper variables var vertex = new Vector3(); var uv = new Vector2(); // center point vertices.push( 0, 0, 0 ); normals.push( 0, 0, 1 ); uvs.push( 0.5, 0.5 ); for ( var s = 0, i = 3; s <= segments; s ++, i += 3 ) { var segment = thetaStart + s / segments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, 0, 1 ); // uvs uv.x = ( vertices[ i ] / radius + 1 ) / 2; uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2; uvs.push( uv.x, uv.y ); } // indices for ( var i$1 = 1; i$1 <= segments; i$1 ++ ) { indices.push( i$1, i$1 + 1, 0 ); } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); CircleBufferGeometry.prototype.constructor = CircleBufferGeometry; var Geometries = /*#__PURE__*/Object.freeze({ __proto__: null, WireframeGeometry: WireframeGeometry, ParametricGeometry: ParametricGeometry, ParametricBufferGeometry: ParametricBufferGeometry, TetrahedronGeometry: TetrahedronGeometry, TetrahedronBufferGeometry: TetrahedronBufferGeometry, OctahedronGeometry: OctahedronGeometry, OctahedronBufferGeometry: OctahedronBufferGeometry, IcosahedronGeometry: IcosahedronGeometry, IcosahedronBufferGeometry: IcosahedronBufferGeometry, DodecahedronGeometry: DodecahedronGeometry, DodecahedronBufferGeometry: DodecahedronBufferGeometry, PolyhedronGeometry: PolyhedronGeometry, PolyhedronBufferGeometry: PolyhedronBufferGeometry, TubeGeometry: TubeGeometry, TubeBufferGeometry: TubeBufferGeometry, TorusKnotGeometry: TorusKnotGeometry, TorusKnotBufferGeometry: TorusKnotBufferGeometry, TorusGeometry: TorusGeometry, TorusBufferGeometry: TorusBufferGeometry, TextGeometry: TextGeometry, TextBufferGeometry: TextBufferGeometry, SphereGeometry: SphereGeometry, SphereBufferGeometry: SphereBufferGeometry, RingGeometry: RingGeometry, RingBufferGeometry: RingBufferGeometry, PlaneGeometry: PlaneGeometry, PlaneBufferGeometry: PlaneBufferGeometry, LatheGeometry: LatheGeometry, LatheBufferGeometry: LatheBufferGeometry, ShapeGeometry: ShapeGeometry, ShapeBufferGeometry: ShapeBufferGeometry, ExtrudeGeometry: ExtrudeGeometry, ExtrudeBufferGeometry: ExtrudeBufferGeometry, EdgesGeometry: EdgesGeometry, ConeGeometry: ConeGeometry, ConeBufferGeometry: ConeBufferGeometry, CylinderGeometry: CylinderGeometry, CylinderBufferGeometry: CylinderBufferGeometry, CircleGeometry: CircleGeometry, CircleBufferGeometry: CircleBufferGeometry, BoxGeometry: BoxGeometry, BoxBufferGeometry: BoxBufferGeometry }); /** * parameters = { * color: * } */ function ShadowMaterial( parameters ) { Material.call( this ); this.type = 'ShadowMaterial'; this.color = new Color( 0x000000 ); this.transparent = true; this.setValues( parameters ); } ShadowMaterial.prototype = Object.create( Material.prototype ); ShadowMaterial.prototype.constructor = ShadowMaterial; ShadowMaterial.prototype.isShadowMaterial = true; ShadowMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); return this; }; function RawShaderMaterial( parameters ) { ShaderMaterial.call( this, parameters ); this.type = 'RawShaderMaterial'; } RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype ); RawShaderMaterial.prototype.constructor = RawShaderMaterial; RawShaderMaterial.prototype.isRawShaderMaterial = true; /** * parameters = { * color: , * roughness: , * metalness: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * roughnessMap: new THREE.Texture( ), * * metalnessMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * envMapIntensity: * * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshStandardMaterial( parameters ) { Material.call( this ); this.defines = { 'STANDARD': '' }; this.type = 'MeshStandardMaterial'; this.color = new Color( 0xffffff ); // diffuse this.roughness = 1.0; this.metalness = 0.0; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapIntensity = 1.0; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.vertexTangents = false; this.setValues( parameters ); } MeshStandardMaterial.prototype = Object.create( Material.prototype ); MeshStandardMaterial.prototype.constructor = MeshStandardMaterial; MeshStandardMaterial.prototype.isMeshStandardMaterial = true; MeshStandardMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.defines = { 'STANDARD': '' }; this.color.copy( source.color ); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapIntensity = source.envMapIntensity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; this.vertexTangents = source.vertexTangents; return this; }; /** * parameters = { * clearcoat: , * clearcoatMap: new THREE.Texture( ), * clearcoatRoughness: , * clearcoatRoughnessMap: new THREE.Texture( ), * clearcoatNormalScale: , * clearcoatNormalMap: new THREE.Texture( ), * * reflectivity: , * * sheen: , * * transmission: , * transmissionMap: new THREE.Texture( ) * } */ function MeshPhysicalMaterial( parameters ) { MeshStandardMaterial.call( this ); this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.type = 'MeshPhysicalMaterial'; this.clearcoat = 0.0; this.clearcoatMap = null; this.clearcoatRoughness = 0.0; this.clearcoatRoughnessMap = null; this.clearcoatNormalScale = new Vector2( 1, 1 ); this.clearcoatNormalMap = null; this.reflectivity = 0.5; // maps to F0 = 0.04 this.sheen = null; // null will disable sheen bsdf this.transmission = 0.0; this.transmissionMap = null; this.setValues( parameters ); } MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype ); MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial; MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true; MeshPhysicalMaterial.prototype.copy = function ( source ) { MeshStandardMaterial.prototype.copy.call( this, source ); this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.clearcoat = source.clearcoat; this.clearcoatMap = source.clearcoatMap; this.clearcoatRoughness = source.clearcoatRoughness; this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; this.clearcoatNormalMap = source.clearcoatNormalMap; this.clearcoatNormalScale.copy( source.clearcoatNormalScale ); this.reflectivity = source.reflectivity; if ( source.sheen ) { this.sheen = ( this.sheen || new Color() ).copy( source.sheen ); } else { this.sheen = null; } this.transmission = source.transmission; this.transmissionMap = source.transmissionMap; return this; }; /** * parameters = { * color: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.MultiplyOperation, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshPhongMaterial( parameters ) { Material.call( this ); this.type = 'MeshPhongMaterial'; this.color = new Color( 0xffffff ); // diffuse this.specular = new Color( 0x111111 ); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshPhongMaterial.prototype = Object.create( Material.prototype ); MeshPhongMaterial.prototype.constructor = MeshPhongMaterial; MeshPhongMaterial.prototype.isMeshPhongMaterial = true; MeshPhongMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.specular.copy( source.specular ); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * parameters = { * color: , * * map: new THREE.Texture( ), * gradientMap: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * alphaMap: new THREE.Texture( ), * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshToonMaterial( parameters ) { Material.call( this ); this.defines = { 'TOON': '' }; this.type = 'MeshToonMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.gradientMap = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshToonMaterial.prototype = Object.create( Material.prototype ); MeshToonMaterial.prototype.constructor = MeshToonMaterial; MeshToonMaterial.prototype.isMeshToonMaterial = true; MeshToonMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.gradientMap = source.gradientMap; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * parameters = { * opacity: , * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshNormalMaterial( parameters ) { Material.call( this ); this.type = 'MeshNormalMaterial'; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshNormalMaterial.prototype = Object.create( Material.prototype ); MeshNormalMaterial.prototype.constructor = MeshNormalMaterial; MeshNormalMaterial.prototype.isMeshNormalMaterial = true; MeshNormalMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * parameters = { * color: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshLambertMaterial( parameters ) { Material.call( this ); this.type = 'MeshLambertMaterial'; this.color = new Color( 0xffffff ); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshLambertMaterial.prototype = Object.create( Material.prototype ); MeshLambertMaterial.prototype.constructor = MeshLambertMaterial; MeshLambertMaterial.prototype.isMeshLambertMaterial = true; MeshLambertMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * parameters = { * color: , * opacity: , * * matcap: new THREE.Texture( ), * * map: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * alphaMap: new THREE.Texture( ), * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshMatcapMaterial( parameters ) { Material.call( this ); this.defines = { 'MATCAP': '' }; this.type = 'MeshMatcapMaterial'; this.color = new Color( 0xffffff ); // diffuse this.matcap = null; this.map = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.skinning = false; this.morphTargets = false; this.morphNormals = false; this.setValues( parameters ); } MeshMatcapMaterial.prototype = Object.create( Material.prototype ); MeshMatcapMaterial.prototype.constructor = MeshMatcapMaterial; MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true; MeshMatcapMaterial.prototype.copy = function ( source ) { Material.prototype.copy.call( this, source ); this.defines = { 'MATCAP': '' }; this.color.copy( source.color ); this.matcap = source.matcap; this.map = source.map; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals; return this; }; /** * parameters = { * color: , * opacity: , * * linewidth: , * * scale: , * dashSize: , * gapSize: * } */ function LineDashedMaterial( parameters ) { LineBasicMaterial.call( this ); this.type = 'LineDashedMaterial'; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.setValues( parameters ); } LineDashedMaterial.prototype = Object.create( LineBasicMaterial.prototype ); LineDashedMaterial.prototype.constructor = LineDashedMaterial; LineDashedMaterial.prototype.isLineDashedMaterial = true; LineDashedMaterial.prototype.copy = function ( source ) { LineBasicMaterial.prototype.copy.call( this, source ); this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize; return this; }; var Materials = /*#__PURE__*/Object.freeze({ __proto__: null, ShadowMaterial: ShadowMaterial, SpriteMaterial: SpriteMaterial, RawShaderMaterial: RawShaderMaterial, ShaderMaterial: ShaderMaterial, PointsMaterial: PointsMaterial, MeshPhysicalMaterial: MeshPhysicalMaterial, MeshStandardMaterial: MeshStandardMaterial, MeshPhongMaterial: MeshPhongMaterial, MeshToonMaterial: MeshToonMaterial, MeshNormalMaterial: MeshNormalMaterial, MeshLambertMaterial: MeshLambertMaterial, MeshDepthMaterial: MeshDepthMaterial, MeshDistanceMaterial: MeshDistanceMaterial, MeshBasicMaterial: MeshBasicMaterial, MeshMatcapMaterial: MeshMatcapMaterial, LineDashedMaterial: LineDashedMaterial, LineBasicMaterial: LineBasicMaterial, Material: Material }); var AnimationUtils = { // same as Array.prototype.slice, but also works on typed arrays arraySlice: function ( array, from, to ) { if ( AnimationUtils.isTypedArray( array ) ) { // in ios9 array.subarray(from, undefined) will return empty array // but array.subarray(from) or array.subarray(from, len) is correct return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) ); } return array.slice( from, to ); }, // converts an array to a specific type convertArray: function ( array, type, forceClone ) { if ( ! array || // let 'undefined' and 'null' pass ! forceClone && array.constructor === type ) { return array; } if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { return new type( array ); // create typed array } return Array.prototype.slice.call( array ); // create Array }, isTypedArray: function ( object ) { return ArrayBuffer.isView( object ) && ! ( object instanceof DataView ); }, // returns an array by which times and values can be sorted getKeyframeOrder: function ( times ) { function compareTime( i, j ) { return times[ i ] - times[ j ]; } var n = times.length; var result = new Array( n ); for ( var i = 0; i !== n; ++ i ) { result[ i ] = i; } result.sort( compareTime ); return result; }, // uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function ( values, stride, order ) { var nValues = values.length; var result = new values.constructor( nValues ); for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { var srcOffset = order[ i ] * stride; for ( var j = 0; j !== stride; ++ j ) { result[ dstOffset ++ ] = values[ srcOffset + j ]; } } return result; }, // function for parsing AOS keyframe formats flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) { var i = 1, key = jsonKeys[ 0 ]; while ( key !== undefined && key[ valuePropertyName ] === undefined ) { key = jsonKeys[ i ++ ]; } if ( key === undefined ) { return; } // no data var value = key[ valuePropertyName ]; if ( value === undefined ) { return; } // no data if ( Array.isArray( value ) ) { do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push.apply( values, value ); // push all elements } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else if ( value.toArray !== undefined ) { // ...assume THREE.Math-ish do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); value.toArray( values, values.length ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else { // otherwise push as-is do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push( value ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } }, subclip: function ( sourceClip, name, startFrame, endFrame, fps ) { fps = fps || 30; var clip = sourceClip.clone(); clip.name = name; var tracks = []; for ( var i = 0; i < clip.tracks.length; ++ i ) { var track = clip.tracks[ i ]; var valueSize = track.getValueSize(); var times = []; var values = []; for ( var j = 0; j < track.times.length; ++ j ) { var frame = track.times[ j ] * fps; if ( frame < startFrame || frame >= endFrame ) { continue; } times.push( track.times[ j ] ); for ( var k = 0; k < valueSize; ++ k ) { values.push( track.values[ j * valueSize + k ] ); } } if ( times.length === 0 ) { continue; } track.times = AnimationUtils.convertArray( times, track.times.constructor ); track.values = AnimationUtils.convertArray( values, track.values.constructor ); tracks.push( track ); } clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip var minStartTime = Infinity; for ( var i$1 = 0; i$1 < clip.tracks.length; ++ i$1 ) { if ( minStartTime > clip.tracks[ i$1 ].times[ 0 ] ) { minStartTime = clip.tracks[ i$1 ].times[ 0 ]; } } // shift all tracks such that clip begins at t=0 for ( var i$2 = 0; i$2 < clip.tracks.length; ++ i$2 ) { clip.tracks[ i$2 ].shift( - 1 * minStartTime ); } clip.resetDuration(); return clip; }, makeClipAdditive: function ( targetClip, referenceFrame, referenceClip, fps ) { if ( referenceFrame === undefined ) { referenceFrame = 0; } if ( referenceClip === undefined ) { referenceClip = targetClip; } if ( fps === undefined || fps <= 0 ) { fps = 30; } var numTracks = targetClip.tracks.length; var referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame var loop = function ( i ) { var referenceTrack = referenceClip.tracks[ i ]; var referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) { return; } // Find the track in the target clip whose name and type matches the reference track var targetTrack = targetClip.tracks.find( function ( track ) { return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType; } ); if ( targetTrack === undefined ) { return; } var referenceOffset = 0; var referenceValueSize = referenceTrack.getValueSize(); if ( referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { referenceOffset = referenceValueSize / 3; } var targetOffset = 0; var targetValueSize = targetTrack.getValueSize(); if ( targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { targetOffset = targetValueSize / 3; } var lastIndex = referenceTrack.times.length - 1; var referenceValue = (void 0); // Find the value to subtract out of the track if ( referenceTime <= referenceTrack.times[ 0 ] ) { // Reference frame is earlier than the first keyframe, so just use the first keyframe var startIndex = referenceOffset; var endIndex = referenceValueSize - referenceOffset; referenceValue = AnimationUtils.arraySlice( referenceTrack.values, startIndex, endIndex ); } else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) { // Reference frame is after the last keyframe, so just use the last keyframe var startIndex$1 = lastIndex * referenceValueSize + referenceOffset; var endIndex$1 = startIndex$1 + referenceValueSize - referenceOffset; referenceValue = AnimationUtils.arraySlice( referenceTrack.values, startIndex$1, endIndex$1 ); } else { // Interpolate to the reference value var interpolant = referenceTrack.createInterpolant(); var startIndex$2 = referenceOffset; var endIndex$2 = referenceValueSize - referenceOffset; interpolant.evaluate( referenceTime ); referenceValue = AnimationUtils.arraySlice( interpolant.resultBuffer, startIndex$2, endIndex$2 ); } // Conjugate the quaternion if ( referenceTrackType === 'quaternion' ) { var referenceQuat = new Quaternion().fromArray( referenceValue ).normalize().conjugate(); referenceQuat.toArray( referenceValue ); } // Subtract the reference value from all of the track values var numTimes = targetTrack.times.length; for ( var j = 0; j < numTimes; ++ j ) { var valueStart = j * targetValueSize + targetOffset; if ( referenceTrackType === 'quaternion' ) { // Multiply the conjugate for quaternion track types Quaternion.multiplyQuaternionsFlat( targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart ); } else { var valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types for ( var k = 0; k < valueEnd; ++ k ) { targetTrack.values[ valueStart + k ] -= referenceValue[ k ]; } } } }; for ( var i = 0; i < numTracks; ++ i ) loop( i ); targetClip.blendMode = AdditiveAnimationBlendMode; return targetClip; } }; /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * */ function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); this.sampleValues = sampleValues; this.valueSize = sampleSize; } Object.assign( Interpolant.prototype, { evaluate: function ( t ) { var pp = this.parameterPositions; var i1 = this._cachedIndex, t1 = pp[ i1 ], t0 = pp[ i1 - 1 ]; validate_interval: { seek: { var right; linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if ( ! ( t < t1 ) ) { for ( var giveUpAt = i1 + 2; ; ) { if ( t1 === undefined ) { if ( t < t0 ) { break forward_scan; } // after end i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t, t0 ); } if ( i1 === giveUpAt ) { break; } // this loop t0 = t1; t1 = pp[ ++ i1 ]; if ( t < t1 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the right side of the index right = pp.length; break linear_scan; } //- slower code: //- if ( t < t0 || t0 === undefined ) { if ( ! ( t >= t0 ) ) { // looping? var t1global = pp[ 1 ]; if ( t < t1global ) { i1 = 2; // + 1, using the scan for the details t0 = t1global; } // linear reverse scan for ( var giveUpAt$1 = i1 - 2; ; ) { if ( t0 === undefined ) { // before start this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( i1 === giveUpAt$1 ) { break; } // this loop t1 = t0; t0 = pp[ -- i1 - 1 ]; if ( t >= t0 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan; } // the interval is valid break validate_interval; } // linear scan // binary search while ( i1 < right ) { var mid = ( i1 + right ) >>> 1; if ( t < pp[ mid ] ) { right = mid; } else { i1 = mid + 1; } } t1 = pp[ i1 ]; t0 = pp[ i1 - 1 ]; // check boundary cases, again if ( t0 === undefined ) { this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 ); } if ( t1 === undefined ) { i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t0, t ); } } // seek this._cachedIndex = i1; this.intervalChanged_( i1, t0, t1 ); } // validate_interval return this.interpolate_( i1, t0, t, t1 ); }, settings: null, // optional, subclass-specific settings structure // Note: The indirection allows central control of many interpolants. // --- Protected interface DefaultSettings_: {}, getSettings_: function () { return this.settings || this.DefaultSettings_; }, copySampleValue_: function ( index ) { // copies a sample value to the result buffer var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset + i ]; } return result; }, // Template methods for derived classes: interpolate_: function ( /* i1, t0, t, t1 */ ) { throw new Error( 'call to abstract method' ); // implementations shall return this.resultBuffer }, intervalChanged_: function ( /* i1, t0, t1 */ ) { // empty } } ); // DECLARE ALIAS AFTER assign prototype Object.assign( Interpolant.prototype, { //( 0, t, t0 ), returns this.resultBuffer beforeStart_: Interpolant.prototype.copySampleValue_, //( N-1, tN-1, t ), returns this.resultBuffer afterEnd_: Interpolant.prototype.copySampleValue_, } ); /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. */ function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); this._weightPrev = - 0; this._offsetPrev = - 0; this._weightNext = - 0; this._offsetNext = - 0; } CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: CubicInterpolant, DefaultSettings_: { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }, intervalChanged_: function ( i1, t0, t1 ) { var pp = this.parameterPositions; var iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[ iPrev ], tNext = pp[ iNext ]; if ( tPrev === undefined ) { switch ( this.getSettings_().endingStart ) { case ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1; break; case WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; break; default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1; } } if ( tNext === undefined ) { switch ( this.getSettings_().endingEnd ) { case ZeroSlopeEnding: // f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0; break; case WrapAroundEnding: // use the other end of the curve iNext = 1; tNext = t1 + pp[ 1 ] - pp[ 0 ]; break; default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0; } } var halfDt = ( t1 - t0 ) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / ( t0 - tPrev ); this._weightNext = halfDt / ( tNext - t1 ); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; }, interpolate_: function ( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = ( t - t0 ) / ( t1 - t0 ), pp = p * p, ppp = pp * p; // evaluate polynomials var sP = - wP * ppp + 2 * wP * pp - wP * p; var s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1; var s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; var sN = wN * ppp - wN * pp; // combine data linearly for ( var i = 0; i !== stride; ++ i ) { result[ i ] = sP * values[ oP + i ] + s0 * values[ o0 + i ] + s1 * values[ o1 + i ] + sN * values[ oN + i ]; } return result; } } ); function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: LinearInterpolant, interpolate_: function ( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = ( t - t0 ) / ( t1 - t0 ), weight0 = 1 - weight1; for ( var i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset0 + i ] * weight0 + values[ offset1 + i ] * weight1; } return result; } } ); /** * * Interpolant that evaluates to the sample value at the position preceeding * the parameter. */ function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: DiscreteInterpolant, interpolate_: function ( i1 /*, t0, t, t1 */ ) { return this.copySampleValue_( i1 - 1 ); } } ); function KeyframeTrack( name, times, values, interpolation ) { if ( name === undefined ) { throw new Error( 'THREE.KeyframeTrack: track name is undefined' ); } if ( times === undefined || times.length === 0 ) { throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name ); } this.name = name; this.times = AnimationUtils.convertArray( times, this.TimeBufferType ); this.values = AnimationUtils.convertArray( values, this.ValueBufferType ); this.setInterpolation( interpolation || this.DefaultInterpolation ); } // Static methods Object.assign( KeyframeTrack, { // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): toJSON: function ( track ) { var trackType = track.constructor; var json; // derived classes can define a static toJSON method if ( trackType.toJSON !== undefined ) { json = trackType.toJSON( track ); } else { // by default, we assume the data can be serialized as-is json = { 'name': track.name, 'times': AnimationUtils.convertArray( track.times, Array ), 'values': AnimationUtils.convertArray( track.values, Array ) }; var interpolation = track.getInterpolation(); if ( interpolation !== track.DefaultInterpolation ) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; // mandatory return json; } } ); Object.assign( KeyframeTrack.prototype, { constructor: KeyframeTrack, TimeBufferType: Float32Array, ValueBufferType: Float32Array, DefaultInterpolation: InterpolateLinear, InterpolantFactoryMethodDiscrete: function ( result ) { return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodLinear: function ( result ) { return new LinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: function ( result ) { return new CubicInterpolant( this.times, this.values, this.getValueSize(), result ); }, setInterpolation: function ( interpolation ) { var factoryMethod; switch ( interpolation ) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if ( factoryMethod === undefined ) { var message = "unsupported interpolation for " + this.ValueTypeName + " keyframe track named " + this.name; if ( this.createInterpolant === undefined ) { // fall back to default, unless the default itself is messed up if ( interpolation !== this.DefaultInterpolation ) { this.setInterpolation( this.DefaultInterpolation ); } else { throw new Error( message ); // fatal, in this case } } console.warn( 'THREE.KeyframeTrack:', message ); return this; } this.createInterpolant = factoryMethod; return this; }, getInterpolation: function () { switch ( this.createInterpolant ) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth; } }, getValueSize: function () { return this.values.length / this.times.length; }, // move all keyframes either forwards or backwards in time shift: function ( timeOffset ) { if ( timeOffset !== 0.0 ) { var times = this.times; for ( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] += timeOffset; } } return this; }, // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale: function ( timeScale ) { if ( timeScale !== 1.0 ) { var times = this.times; for ( var i = 0, n = times.length; i !== n; ++ i ) { times[ i ] *= timeScale; } } return this; }, // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim: function ( startTime, endTime ) { var times = this.times, nKeys = times.length; var from = 0, to = nKeys - 1; while ( from !== nKeys && times[ from ] < startTime ) { ++ from; } while ( to !== - 1 && times[ to ] > endTime ) { -- to; } ++ to; // inclusive -> exclusive bound if ( from !== 0 || to !== nKeys ) { // empty tracks are forbidden, so keep at least one keyframe if ( from >= to ) { to = Math.max( to, 1 ); from = to - 1; } var stride = this.getValueSize(); this.times = AnimationUtils.arraySlice( times, from, to ); this.values = AnimationUtils.arraySlice( this.values, from * stride, to * stride ); } return this; }, // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate: function () { var valid = true; var valueSize = this.getValueSize(); if ( valueSize - Math.floor( valueSize ) !== 0 ) { console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this ); valid = false; } var times = this.times, values = this.values, nKeys = times.length; if ( nKeys === 0 ) { console.error( 'THREE.KeyframeTrack: Track is empty.', this ); valid = false; } var prevTime = null; for ( var i = 0; i !== nKeys; i ++ ) { var currTime = times[ i ]; if ( typeof currTime === 'number' && isNaN( currTime ) ) { console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime ); valid = false; break; } if ( prevTime !== null && prevTime > currTime ) { console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime ); valid = false; break; } prevTime = currTime; } if ( values !== undefined ) { if ( AnimationUtils.isTypedArray( values ) ) { for ( var i$1 = 0, n = values.length; i$1 !== n; ++ i$1 ) { var value = values[ i$1 ]; if ( isNaN( value ) ) { console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i$1, value ); valid = false; break; } } } } return valid; }, // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize: function () { // times or values may be shared with other tracks, so overwriting is unsafe var times = AnimationUtils.arraySlice( this.times ), values = AnimationUtils.arraySlice( this.values ), stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, lastIndex = times.length - 1; var writeIndex = 1; for ( var i = 1; i < lastIndex; ++ i ) { var keep = false; var time = times[ i ]; var timeNext = times[ i + 1 ]; // remove adjacent keyframes scheduled at the same time if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) { if ( ! smoothInterpolation ) { // remove unnecessary keyframes same as their neighbors var offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for ( var j = 0; j !== stride; ++ j ) { var value = values[ offset + j ]; if ( value !== values[ offsetP + j ] || value !== values[ offsetN + j ] ) { keep = true; break; } } } else { keep = true; } } // in-place compaction if ( keep ) { if ( i !== writeIndex ) { times[ writeIndex ] = times[ i ]; var readOffset = i * stride, writeOffset = writeIndex * stride; for ( var j$1 = 0; j$1 !== stride; ++ j$1 ) { values[ writeOffset + j$1 ] = values[ readOffset + j$1 ]; } } ++ writeIndex; } } // flush last keyframe (compaction looks ahead) if ( lastIndex > 0 ) { times[ writeIndex ] = times[ lastIndex ]; for ( var readOffset$1 = lastIndex * stride, writeOffset$1 = writeIndex * stride, j$2 = 0; j$2 !== stride; ++ j$2 ) { values[ writeOffset$1 + j$2 ] = values[ readOffset$1 + j$2 ]; } ++ writeIndex; } if ( writeIndex !== times.length ) { this.times = AnimationUtils.arraySlice( times, 0, writeIndex ); this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride ); } else { this.times = times; this.values = values; } return this; }, clone: function () { var times = AnimationUtils.arraySlice( this.times, 0 ); var values = AnimationUtils.arraySlice( this.values, 0 ); var TypedKeyframeTrack = this.constructor; var track = new TypedKeyframeTrack( this.name, times, values ); // Interpolant argument to constructor is not saved, so copy the factory method directly. track.createInterpolant = this.createInterpolant; return track; } } ); /** * A Track of Boolean keyframe values. */ function BooleanKeyframeTrack( name, times, values ) { KeyframeTrack.call( this, name, times, values ); } BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { constructor: BooleanKeyframeTrack, ValueTypeName: 'bool', ValueBufferType: Array, DefaultInterpolation: InterpolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined // Note: Actually this track could have a optimized / compressed // representation of a single value and a custom interpolant that // computes "firstValue ^ isOdd( index )". } ); /** * A Track of keyframe values that represent color. */ function ColorKeyframeTrack( name, times, values, interpolation ) { KeyframeTrack.call( this, name, times, values, interpolation ); } ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { constructor: ColorKeyframeTrack, ValueTypeName: 'color' // ValueBufferType is inherited // DefaultInterpolation is inherited // Note: Very basic implementation and nothing special yet. // However, this is the place for color space parameterization. } ); /** * A Track of numeric keyframe values. */ function NumberKeyframeTrack( name, times, values, interpolation ) { KeyframeTrack.call( this, name, times, values, interpolation ); } NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { constructor: NumberKeyframeTrack, ValueTypeName: 'number' // ValueBufferType is inherited // DefaultInterpolation is inherited } ); /** * Spherical linear unit quaternion interpolant. */ function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { constructor: QuaternionLinearInterpolant, interpolate_: function ( i1, t0, t, t1 ) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, alpha = ( t - t0 ) / ( t1 - t0 ); var offset = i1 * stride; for ( var end = offset + stride; offset !== end; offset += 4 ) { Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); } return result; } } ); /** * A Track of quaternion keyframe values. */ function QuaternionKeyframeTrack( name, times, values, interpolation ) { KeyframeTrack.call( this, name, times, values, interpolation ); } QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { constructor: QuaternionKeyframeTrack, ValueTypeName: 'quaternion', // ValueBufferType is inherited DefaultInterpolation: InterpolateLinear, InterpolantFactoryMethodLinear: function ( result ) { return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); }, InterpolantFactoryMethodSmooth: undefined // not yet implemented } ); /** * A Track that interpolates Strings */ function StringKeyframeTrack( name, times, values, interpolation ) { KeyframeTrack.call( this, name, times, values, interpolation ); } StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { constructor: StringKeyframeTrack, ValueTypeName: 'string', ValueBufferType: Array, DefaultInterpolation: InterpolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined } ); /** * A Track of vectored keyframe values. */ function VectorKeyframeTrack( name, times, values, interpolation ) { KeyframeTrack.call( this, name, times, values, interpolation ); } VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { constructor: VectorKeyframeTrack, ValueTypeName: 'vector' // ValueBufferType is inherited // DefaultInterpolation is inherited } ); function AnimationClip( name, duration, tracks, blendMode ) { this.name = name; this.tracks = tracks; this.duration = ( duration !== undefined ) ? duration : - 1; this.blendMode = ( blendMode !== undefined ) ? blendMode : NormalAnimationBlendMode; this.uuid = MathUtils.generateUUID(); // this means it should figure out its duration by scanning the tracks if ( this.duration < 0 ) { this.resetDuration(); } } function getTrackTypeForValueTypeName( typeName ) { switch ( typeName.toLowerCase() ) { case 'scalar': case 'double': case 'float': case 'number': case 'integer': return NumberKeyframeTrack; case 'vector': case 'vector2': case 'vector3': case 'vector4': return VectorKeyframeTrack; case 'color': return ColorKeyframeTrack; case 'quaternion': return QuaternionKeyframeTrack; case 'bool': case 'boolean': return BooleanKeyframeTrack; case 'string': return StringKeyframeTrack; } throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName ); } function parseKeyframeTrack( json ) { if ( json.type === undefined ) { throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' ); } var trackType = getTrackTypeForValueTypeName( json.type ); if ( json.times === undefined ) { var times = [], values = []; AnimationUtils.flattenJSON( json.keys, times, values, 'value' ); json.times = times; json.values = values; } // derived classes can define a static parse method if ( trackType.parse !== undefined ) { return trackType.parse( json ); } else { // by default, we assume a constructor compatible with the base return new trackType( json.name, json.times, json.values, json.interpolation ); } } Object.assign( AnimationClip, { parse: function ( json ) { var tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / ( json.fps || 1.0 ); for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) { tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) ); } return new AnimationClip( json.name, json.duration, tracks, json.blendMode ); }, toJSON: function ( clip ) { var tracks = [], clipTracks = clip.tracks; var json = { 'name': clip.name, 'duration': clip.duration, 'tracks': tracks, 'uuid': clip.uuid, 'blendMode': clip.blendMode }; for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) { tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) ); } return json; }, CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) { var numMorphTargets = morphTargetSequence.length; var tracks = []; for ( var i = 0; i < numMorphTargets; i ++ ) { var times = []; var values = []; times.push( ( i + numMorphTargets - 1 ) % numMorphTargets, i, ( i + 1 ) % numMorphTargets ); values.push( 0, 1, 0 ); var order = AnimationUtils.getKeyframeOrder( times ); times = AnimationUtils.sortedArray( times, 1, order ); values = AnimationUtils.sortedArray( values, 1, order ); // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if ( ! noLoop && times[ 0 ] === 0 ) { times.push( numMorphTargets ); values.push( values[ 0 ] ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', times, values ).scale( 1.0 / fps ) ); } return new AnimationClip( name, - 1, tracks ); }, findByName: function ( objectOrClipArray, name ) { var clipArray = objectOrClipArray; if ( ! Array.isArray( objectOrClipArray ) ) { var o = objectOrClipArray; clipArray = o.geometry && o.geometry.animations || o.animations; } for ( var i = 0; i < clipArray.length; i ++ ) { if ( clipArray[ i ].name === name ) { return clipArray[ i ]; } } return null; }, CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) { var animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 var pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for ( var i = 0, il = morphTargets.length; i < il; i ++ ) { var morphTarget = morphTargets[ i ]; var parts = morphTarget.name.match( pattern ); if ( parts && parts.length > 1 ) { var name = parts[ 1 ]; var animationMorphTargets = animationToMorphTargets[ name ]; if ( ! animationMorphTargets ) { animationToMorphTargets[ name ] = animationMorphTargets = []; } animationMorphTargets.push( morphTarget ); } } var clips = []; for ( var name$1 in animationToMorphTargets ) { clips.push( AnimationClip.CreateFromMorphTargetSequence( name$1, animationToMorphTargets[ name$1 ], fps, noLoop ) ); } return clips; }, // parse the animation.hierarchy format parseAnimation: function ( animation, bones ) { if ( ! animation ) { console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' ); return null; } var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) { // only return track if there are actually keys. if ( animationKeys.length !== 0 ) { var times = []; var values = []; AnimationUtils.flattenJSON( animationKeys, times, values, propertyName ); // empty keys are filtered out, so check again if ( times.length !== 0 ) { destTracks.push( new trackType( trackName, times, values ) ); } } }; var tracks = []; var clipName = animation.name || 'default'; var fps = animation.fps || 30; var blendMode = animation.blendMode; // automatic length determination in AnimationClip. var duration = animation.length || - 1; var hierarchyTracks = animation.hierarchy || []; for ( var h = 0; h < hierarchyTracks.length; h ++ ) { var animationKeys = hierarchyTracks[ h ].keys; // skip empty tracks if ( ! animationKeys || animationKeys.length === 0 ) { continue; } // process morph targets if ( animationKeys[ 0 ].morphTargets ) { // figure out all morph targets used in this track var morphTargetNames = {}; var k = (void 0); for ( k = 0; k < animationKeys.length; k ++ ) { if ( animationKeys[ k ].morphTargets ) { for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) { morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1; } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for ( var morphTargetName in morphTargetNames ) { var times = []; var values = []; for ( var m$1 = 0; m$1 !== animationKeys[ k ].morphTargets.length; ++ m$1 ) { var animationKey = animationKeys[ k ]; times.push( animationKey.time ); values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); } duration = morphTargetNames.length * ( fps || 1.0 ); } else { // ...assume skeletal animation var boneName = '.bones[' + bones[ h ].name + ']'; addNonemptyTrack( VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks ); addNonemptyTrack( QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks ); addNonemptyTrack( VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks ); } } if ( tracks.length === 0 ) { return null; } var clip = new AnimationClip( clipName, duration, tracks, blendMode ); return clip; } } ); Object.assign( AnimationClip.prototype, { resetDuration: function () { var tracks = this.tracks; var duration = 0; for ( var i = 0, n = tracks.length; i !== n; ++ i ) { var track = this.tracks[ i ]; duration = Math.max( duration, track.times[ track.times.length - 1 ] ); } this.duration = duration; return this; }, trim: function () { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].trim( 0, this.duration ); } return this; }, validate: function () { var valid = true; for ( var i = 0; i < this.tracks.length; i ++ ) { valid = valid && this.tracks[ i ].validate(); } return valid; }, optimize: function () { for ( var i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].optimize(); } return this; }, clone: function () { var tracks = []; for ( var i = 0; i < this.tracks.length; i ++ ) { tracks.push( this.tracks[ i ].clone() ); } return new AnimationClip( this.name, this.duration, tracks, this.blendMode ); } } ); var Cache = { enabled: false, files: {}, add: function ( key, file ) { if ( this.enabled === false ) { return; } // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { if ( this.enabled === false ) { return; } // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {}; } }; function LoadingManager( onLoad, onProgress, onError ) { var scope = this; var isLoading = false; var itemsLoaded = 0; var itemsTotal = 0; var urlModifier = undefined; var handlers = []; // Refer to #5689 for the reason why we don't set .onStart // in the constructor this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { itemsTotal ++; if ( isLoading === false ) { if ( scope.onStart !== undefined ) { scope.onStart( url, itemsLoaded, itemsTotal ); } } isLoading = true; }; this.itemEnd = function ( url ) { itemsLoaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, itemsLoaded, itemsTotal ); } if ( itemsLoaded === itemsTotal ) { isLoading = false; if ( scope.onLoad !== undefined ) { scope.onLoad(); } } }; this.itemError = function ( url ) { if ( scope.onError !== undefined ) { scope.onError( url ); } }; this.resolveURL = function ( url ) { if ( urlModifier ) { return urlModifier( url ); } return url; }; this.setURLModifier = function ( transform ) { urlModifier = transform; return this; }; this.addHandler = function ( regex, loader ) { handlers.push( regex, loader ); return this; }; this.removeHandler = function ( regex ) { var index = handlers.indexOf( regex ); if ( index !== - 1 ) { handlers.splice( index, 2 ); } return this; }; this.getHandler = function ( file ) { for ( var i = 0, l = handlers.length; i < l; i += 2 ) { var regex = handlers[ i ]; var loader = handlers[ i + 1 ]; if ( regex.global ) { regex.lastIndex = 0; } // see #17920 if ( regex.test( file ) ) { return loader; } } return null; }; } var DefaultLoadingManager = new LoadingManager(); function Loader( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.crossOrigin = 'anonymous'; this.path = ''; this.resourcePath = ''; this.requestHeader = {}; } Object.assign( Loader.prototype, { load: function ( /* url, onLoad, onProgress, onError */ ) {}, loadAsync: function ( url, onProgress ) { var scope = this; return new Promise( function ( resolve, reject ) { scope.load( url, resolve, onProgress, reject ); } ); }, parse: function ( /* data */ ) {}, setCrossOrigin: function ( crossOrigin ) { this.crossOrigin = crossOrigin; return this; }, setPath: function ( path ) { this.path = path; return this; }, setResourcePath: function ( resourcePath ) { this.resourcePath = resourcePath; return this; }, setRequestHeader: function ( requestHeader ) { this.requestHeader = requestHeader; return this; } } ); var loading = {}; function FileLoader( manager ) { Loader.call( this, manager ); } FileLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: FileLoader, load: function ( url, onLoad, onProgress, onError ) { if ( url === undefined ) { url = ''; } if ( this.path !== undefined ) { url = this.path + url; } url = this.manager.resolveURL( url ); var scope = this; var cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) { onLoad( cached ); } scope.manager.itemEnd( url ); }, 0 ); return cached; } // Check if request is duplicate if ( loading[ url ] !== undefined ) { loading[ url ].push( { onLoad: onLoad, onProgress: onProgress, onError: onError } ); return; } // Check for data: URI var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; var dataUriRegexResult = url.match( dataUriRegex ); var request; // Safari can not handle Data URIs through XMLHttpRequest so process manually if ( dataUriRegexResult ) { var mimeType = dataUriRegexResult[ 1 ]; var isBase64 = !! dataUriRegexResult[ 2 ]; var data = dataUriRegexResult[ 3 ]; data = decodeURIComponent( data ); if ( isBase64 ) { data = atob( data ); } try { var response; var responseType = ( this.responseType || '' ).toLowerCase(); switch ( responseType ) { case 'arraybuffer': case 'blob': var view = new Uint8Array( data.length ); for ( var i = 0; i < data.length; i ++ ) { view[ i ] = data.charCodeAt( i ); } if ( responseType === 'blob' ) { response = new Blob( [ view.buffer ], { type: mimeType } ); } else { response = view.buffer; } break; case 'document': var parser = new DOMParser(); response = parser.parseFromString( data, mimeType ); break; case 'json': response = JSON.parse( data ); break; default: // 'text' or other response = data; break; } // Wait for next browser tick like standard XMLHttpRequest event dispatching does setTimeout( function () { if ( onLoad ) { onLoad( response ); } scope.manager.itemEnd( url ); }, 0 ); } catch ( error ) { // Wait for next browser tick like standard XMLHttpRequest event dispatching does setTimeout( function () { if ( onError ) { onError( error ); } scope.manager.itemError( url ); scope.manager.itemEnd( url ); }, 0 ); } } else { // Initialise array for duplicate requests loading[ url ] = []; loading[ url ].push( { onLoad: onLoad, onProgress: onProgress, onError: onError } ); request = new XMLHttpRequest(); request.open( 'GET', url, true ); request.addEventListener( 'load', function ( event ) { var response = this.response; var callbacks = loading[ url ]; delete loading[ url ]; if ( this.status === 200 || this.status === 0 ) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. if ( this.status === 0 ) { console.warn( 'THREE.FileLoader: HTTP Status 0 received.' ); } // Add to cache only on HTTP success, so that we do not cache // error response bodies as proper responses to requests. Cache.add( url, response ); for ( var i = 0, il = callbacks.length; i < il; i ++ ) { var callback = callbacks[ i ]; if ( callback.onLoad ) { callback.onLoad( response ); } } scope.manager.itemEnd( url ); } else { for ( var i$1 = 0, il$1 = callbacks.length; i$1 < il$1; i$1 ++ ) { var callback$1 = callbacks[ i$1 ]; if ( callback$1.onError ) { callback$1.onError( event ); } } scope.manager.itemError( url ); scope.manager.itemEnd( url ); } }, false ); request.addEventListener( 'progress', function ( event ) { var callbacks = loading[ url ]; for ( var i = 0, il = callbacks.length; i < il; i ++ ) { var callback = callbacks[ i ]; if ( callback.onProgress ) { callback.onProgress( event ); } } }, false ); request.addEventListener( 'error', function ( event ) { var callbacks = loading[ url ]; delete loading[ url ]; for ( var i = 0, il = callbacks.length; i < il; i ++ ) { var callback = callbacks[ i ]; if ( callback.onError ) { callback.onError( event ); } } scope.manager.itemError( url ); scope.manager.itemEnd( url ); }, false ); request.addEventListener( 'abort', function ( event ) { var callbacks = loading[ url ]; delete loading[ url ]; for ( var i = 0, il = callbacks.length; i < il; i ++ ) { var callback = callbacks[ i ]; if ( callback.onError ) { callback.onError( event ); } } scope.manager.itemError( url ); scope.manager.itemEnd( url ); }, false ); if ( this.responseType !== undefined ) { request.responseType = this.responseType; } if ( this.withCredentials !== undefined ) { request.withCredentials = this.withCredentials; } if ( request.overrideMimeType ) { request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' ); } for ( var header in this.requestHeader ) { request.setRequestHeader( header, this.requestHeader[ header ] ); } request.send( null ); } scope.manager.itemStart( url ); return request; }, setResponseType: function ( value ) { this.responseType = value; return this; }, setWithCredentials: function ( value ) { this.withCredentials = value; return this; }, setMimeType: function ( value ) { this.mimeType = value; return this; } } ); function AnimationLoader( manager ) { Loader.call( this, manager ); } AnimationLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: AnimationLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.load( url, function ( text ) { try { onLoad( scope.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); }, parse: function ( json ) { var animations = []; for ( var i = 0; i < json.length; i ++ ) { var clip = AnimationClip.parse( json[ i ] ); animations.push( clip ); } return animations; } } ); /** * Abstract Base class to block based textures loader (dds, pvr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ function CompressedTextureLoader( manager ) { Loader.call( this, manager ); } CompressedTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: CompressedTextureLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var images = []; var texture = new CompressedTexture(); texture.image = images; var loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); var loaded = 0; function loadTexture( i ) { loader.load( url[ i ], function ( buffer ) { var texDatas = scope.parse( buffer, true ); images[ i ] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps }; loaded += 1; if ( loaded === 6 ) { if ( texDatas.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) { onLoad( texture ); } } }, onProgress, onError ); } if ( Array.isArray( url ) ) { for ( var i = 0, il = url.length; i < il; ++ i ) { loadTexture( i ); } } else { // compressed cubemap texture stored in a single DDS file loader.load( url, function ( buffer ) { var texDatas = scope.parse( buffer, true ); if ( texDatas.isCubemap ) { var faces = texDatas.mipmaps.length / texDatas.mipmapCount; for ( var f = 0; f < faces; f ++ ) { images[ f ] = { mipmaps: [] }; for ( var i = 0; i < texDatas.mipmapCount; i ++ ) { images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); images[ f ].format = texDatas.format; images[ f ].width = texDatas.width; images[ f ].height = texDatas.height; } } } else { texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps; } if ( texDatas.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) { onLoad( texture ); } }, onProgress, onError ); } return texture; } } ); function ImageLoader( manager ) { Loader.call( this, manager ); } ImageLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: ImageLoader, load: function ( url, onLoad, onProgress, onError ) { if ( this.path !== undefined ) { url = this.path + url; } url = this.manager.resolveURL( url ); var scope = this; var cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) { onLoad( cached ); } scope.manager.itemEnd( url ); }, 0 ); return cached; } var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' ); function onImageLoad() { image.removeEventListener( 'load', onImageLoad, false ); image.removeEventListener( 'error', onImageError, false ); Cache.add( url, this ); if ( onLoad ) { onLoad( this ); } scope.manager.itemEnd( url ); } function onImageError( event ) { image.removeEventListener( 'load', onImageLoad, false ); image.removeEventListener( 'error', onImageError, false ); if ( onError ) { onError( event ); } scope.manager.itemError( url ); scope.manager.itemEnd( url ); } image.addEventListener( 'load', onImageLoad, false ); image.addEventListener( 'error', onImageError, false ); if ( url.substr( 0, 5 ) !== 'data:' ) { if ( this.crossOrigin !== undefined ) { image.crossOrigin = this.crossOrigin; } } scope.manager.itemStart( url ); image.src = url; return image; } } ); function CubeTextureLoader( manager ) { Loader.call( this, manager ); } CubeTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: CubeTextureLoader, load: function ( urls, onLoad, onProgress, onError ) { var texture = new CubeTexture(); var loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); var loaded = 0; function loadTexture( i ) { loader.load( urls[ i ], function ( image ) { texture.images[ i ] = image; loaded ++; if ( loaded === 6 ) { texture.needsUpdate = true; if ( onLoad ) { onLoad( texture ); } } }, undefined, onError ); } for ( var i = 0; i < urls.length; ++ i ) { loadTexture( i ); } return texture; } } ); /** * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ function DataTextureLoader( manager ) { Loader.call( this, manager ); } DataTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: DataTextureLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var texture = new DataTexture(); var loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); loader.setPath( this.path ); loader.load( url, function ( buffer ) { var texData = scope.parse( buffer ); if ( ! texData ) { return; } if ( texData.image !== undefined ) { texture.image = texData.image; } else if ( texData.data !== undefined ) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping; texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping; texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter; texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter; texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1; if ( texData.format !== undefined ) { texture.format = texData.format; } if ( texData.type !== undefined ) { texture.type = texData.type; } if ( texData.mipmaps !== undefined ) { texture.mipmaps = texData.mipmaps; texture.minFilter = LinearMipmapLinearFilter; // presumably... } if ( texData.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } texture.needsUpdate = true; if ( onLoad ) { onLoad( texture, texData ); } }, onProgress, onError ); return texture; } } ); function TextureLoader( manager ) { Loader.call( this, manager ); } TextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: TextureLoader, load: function ( url, onLoad, onProgress, onError ) { var texture = new Texture(); var loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); loader.load( url, function ( image ) { texture.image = image; // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB. var isJPEG = url.search( /\.jpe?g($|\?)/i ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0; texture.format = isJPEG ? RGBFormat : RGBAFormat; texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); return texture; } } ); /** * Extensible curve object. * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ function Curve() { this.type = 'Curve'; this.arcLengthDivisions = 200; } Object.assign( Curve.prototype, { // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint: function ( /* t, optionalTarget */ ) { console.warn( 'THREE.Curve: .getPoint() not implemented.' ); return null; }, // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt: function ( u, optionalTarget ) { var t = this.getUtoTmapping( u ); return this.getPoint( t, optionalTarget ); }, // Get sequence of points using getPoint( t ) getPoints: function ( divisions ) { if ( divisions === undefined ) { divisions = 5; } var points = []; for ( var d = 0; d <= divisions; d ++ ) { points.push( this.getPoint( d / divisions ) ); } return points; }, // Get sequence of points using getPointAt( u ) getSpacedPoints: function ( divisions ) { if ( divisions === undefined ) { divisions = 5; } var points = []; for ( var d = 0; d <= divisions; d ++ ) { points.push( this.getPointAt( d / divisions ) ); } return points; }, // Get total curve arc length getLength: function () { var lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; }, // Get list of cumulative segment lengths getLengths: function ( divisions ) { if ( divisions === undefined ) { divisions = this.arcLengthDivisions; } if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { return this.cacheArcLengths; } this.needsUpdate = false; var cache = []; var current, last = this.getPoint( 0 ); var sum = 0; cache.push( 0 ); for ( var p = 1; p <= divisions; p ++ ) { current = this.getPoint( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum: sum }; Sum is in the last element. }, updateArcLengths: function () { this.needsUpdate = true; this.getLengths(); }, // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping: function ( u, distance ) { var arcLengths = this.getLengths(); var i = 0; var il = arcLengths.length; var targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } // binary search for the index with largest value smaller than target u distance var low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; if ( arcLengths[ i ] === targetArcLength ) { return i / ( il - 1 ); } // we could get finer grain at lengths, or use simple interpolation between two points var lengthBefore = arcLengths[ i ]; var lengthAfter = arcLengths[ i + 1 ]; var segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t var t = ( i + segmentFraction ) / ( il - 1 ); return t; }, // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent: function ( t, optionalTarget ) { var delta = 0.0001; var t1 = t - delta; var t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) { t1 = 0; } if ( t2 > 1 ) { t2 = 1; } var pt1 = this.getPoint( t1 ); var pt2 = this.getPoint( t2 ); var tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() ); tangent.copy( pt2 ).sub( pt1 ).normalize(); return tangent; }, getTangentAt: function ( u, optionalTarget ) { var t = this.getUtoTmapping( u ); return this.getTangent( t, optionalTarget ); }, computeFrenetFrames: function ( segments, closed ) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf var normal = new Vector3(); var tangents = []; var normals = []; var binormals = []; var vec = new Vector3(); var mat = new Matrix4(); // compute the tangent vectors for each segment on the curve for ( var i = 0; i <= segments; i ++ ) { var u = i / segments; tangents[ i ] = this.getTangentAt( u, new Vector3() ); tangents[ i ].normalize(); } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[ 0 ] = new Vector3(); binormals[ 0 ] = new Vector3(); var min = Number.MAX_VALUE; var tx = Math.abs( tangents[ 0 ].x ); var ty = Math.abs( tangents[ 0 ].y ); var tz = Math.abs( tangents[ 0 ].z ); if ( tx <= min ) { min = tx; normal.set( 1, 0, 0 ); } if ( ty <= min ) { min = ty; normal.set( 0, 1, 0 ); } if ( tz <= min ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); // compute the slowly-varying normal and binormal vectors for each segment on the curve for ( var i$1 = 1; i$1 <= segments; i$1 ++ ) { normals[ i$1 ] = normals[ i$1 - 1 ].clone(); binormals[ i$1 ] = binormals[ i$1 - 1 ].clone(); vec.crossVectors( tangents[ i$1 - 1 ], tangents[ i$1 ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); var theta = Math.acos( MathUtils.clamp( tangents[ i$1 - 1 ].dot( tangents[ i$1 ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i$1 ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i$1 ].crossVectors( tangents[ i$1 ], normals[ i$1 ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed === true ) { var theta$1 = Math.acos( MathUtils.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); theta$1 /= segments; if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { theta$1 = - theta$1; } for ( var i$2 = 1; i$2 <= segments; i$2 ++ ) { // twist a little... normals[ i$2 ].applyMatrix4( mat.makeRotationAxis( tangents[ i$2 ], theta$1 * i$2 ) ); binormals[ i$2 ].crossVectors( tangents[ i$2 ], normals[ i$2 ] ); } } return { tangents: tangents, normals: normals, binormals: binormals }; }, clone: function () { return new this.constructor().copy( this ); }, copy: function ( source ) { this.arcLengthDivisions = source.arcLengthDivisions; return this; }, toJSON: function () { var data = { metadata: { version: 4.5, type: 'Curve', generator: 'Curve.toJSON' } }; data.arcLengthDivisions = this.arcLengthDivisions; data.type = this.type; return data; }, fromJSON: function ( json ) { this.arcLengthDivisions = json.arcLengthDivisions; return this; } } ); function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { Curve.call( this ); this.type = 'EllipseCurve'; this.aX = aX || 0; this.aY = aY || 0; this.xRadius = xRadius || 1; this.yRadius = yRadius || 1; this.aStartAngle = aStartAngle || 0; this.aEndAngle = aEndAngle || 2 * Math.PI; this.aClockwise = aClockwise || false; this.aRotation = aRotation || 0; } EllipseCurve.prototype = Object.create( Curve.prototype ); EllipseCurve.prototype.constructor = EllipseCurve; EllipseCurve.prototype.isEllipseCurve = true; EllipseCurve.prototype.getPoint = function ( t, optionalTarget ) { var point = optionalTarget || new Vector2(); var twoPi = Math.PI * 2; var deltaAngle = this.aEndAngle - this.aStartAngle; var samePoints = Math.abs( deltaAngle ) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI while ( deltaAngle < 0 ) { deltaAngle += twoPi; } while ( deltaAngle > twoPi ) { deltaAngle -= twoPi; } if ( deltaAngle < Number.EPSILON ) { if ( samePoints ) { deltaAngle = 0; } else { deltaAngle = twoPi; } } if ( this.aClockwise === true && ! samePoints ) { if ( deltaAngle === twoPi ) { deltaAngle = - twoPi; } else { deltaAngle = deltaAngle - twoPi; } } var angle = this.aStartAngle + t * deltaAngle; var x = this.aX + this.xRadius * Math.cos( angle ); var y = this.aY + this.yRadius * Math.sin( angle ); if ( this.aRotation !== 0 ) { var cos = Math.cos( this.aRotation ); var sin = Math.sin( this.aRotation ); var tx = x - this.aX; var ty = y - this.aY; // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY; } return point.set( x, y ); }; EllipseCurve.prototype.copy = function ( source ) { Curve.prototype.copy.call( this, source ); this.aX = source.aX; this.aY = source.aY; this.xRadius = source.xRadius; this.yRadius = source.yRadius; this.aStartAngle = source.aStartAngle; this.aEndAngle = source.aEndAngle; this.aClockwise = source.aClockwise; this.aRotation = source.aRotation; return this; }; EllipseCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call( this ); data.aX = this.aX; data.aY = this.aY; data.xRadius = this.xRadius; data.yRadius = this.yRadius; data.aStartAngle = this.aStartAngle; data.aEndAngle = this.aEndAngle; data.aClockwise = this.aClockwise; data.aRotation = this.aRotation; return data; }; EllipseCurve.prototype.fromJSON = function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.aX = json.aX; this.aY = json.aY; this.xRadius = json.xRadius; this.yRadius = json.yRadius; this.aStartAngle = json.aStartAngle; this.aEndAngle = json.aEndAngle; this.aClockwise = json.aClockwise; this.aRotation = json.aRotation; return this; }; function ArcCurve( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); this.type = 'ArcCurve'; } ArcCurve.prototype = Object.create( EllipseCurve.prototype ); ArcCurve.prototype.constructor = ArcCurve; ArcCurve.prototype.isArcCurve = true; /** * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { var c0 = 0, c1 = 0, c2 = 0, c3 = 0; /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init( x0, x1, t0, t1 ) { c0 = x0; c1 = t0; c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; c3 = 2 * x0 - 2 * x1 + t0 + t1; } return { initCatmullRom: function ( x0, x1, x2, x3, tension ) { init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); }, initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) { // compute tangents when parameterized in [t1,t2] var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; init( x1, x2, t1, t2 ); }, calc: function ( t ) { var t2 = t * t; var t3 = t2 * t; return c0 + c1 * t + c2 * t2 + c3 * t3; } }; } // var tmp = new Vector3(); var px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly(); function CatmullRomCurve3( points, closed, curveType, tension ) { Curve.call( this ); this.type = 'CatmullRomCurve3'; this.points = points || []; this.closed = closed || false; this.curveType = curveType || 'centripetal'; this.tension = ( tension !== undefined ) ? tension : 0.5; } CatmullRomCurve3.prototype = Object.create( Curve.prototype ); CatmullRomCurve3.prototype.constructor = CatmullRomCurve3; CatmullRomCurve3.prototype.isCatmullRomCurve3 = true; CatmullRomCurve3.prototype.getPoint = function ( t, optionalTarget ) { var point = optionalTarget || new Vector3(); var points = this.points; var l = points.length; var p = ( l - ( this.closed ? 0 : 1 ) ) * t; var intPoint = Math.floor( p ); var weight = p - intPoint; if ( this.closed ) { intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l; } else if ( weight === 0 && intPoint === l - 1 ) { intPoint = l - 2; weight = 1; } var p0, p3; // 4 points (p1 & p2 defined below) if ( this.closed || intPoint > 0 ) { p0 = points[ ( intPoint - 1 ) % l ]; } else { // extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp; } var p1 = points[ intPoint % l ]; var p2 = points[ ( intPoint + 1 ) % l ]; if ( this.closed || intPoint + 2 < l ) { p3 = points[ ( intPoint + 2 ) % l ]; } else { // extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp; } if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) { // init Centripetal / Chordal Catmull-Rom var pow = this.curveType === 'chordal' ? 0.5 : 0.25; var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); // safety check for repeated points if ( dt1 < 1e-4 ) { dt1 = 1.0; } if ( dt0 < 1e-4 ) { dt0 = dt1; } if ( dt2 < 1e-4 ) { dt2 = dt1; } px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); } else if ( this.curveType === 'catmullrom' ) { px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension ); } point.set( px.calc( weight ), py.calc( weight ), pz.calc( weight ) ); return point; }; CatmullRomCurve3.prototype.copy = function ( source ) { Curve.prototype.copy.call( this, source ); this.points = []; for ( var i = 0, l = source.points.length; i < l; i ++ ) { var point = source.points[ i ]; this.points.push( point.clone() ); } this.closed = source.closed; this.curveType = source.curveType; this.tension = source.tension; return this; }; CatmullRomCurve3.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call( this ); data.points = []; for ( var i = 0, l = this.points.length; i < l; i ++ ) { var point = this.points[ i ]; data.points.push( point.toArray() ); } data.closed = this.closed; data.curveType = this.curveType; data.tension = this.tension; return data; }; CatmullRomCurve3.prototype.fromJSON = function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.points = []; for ( var i = 0, l = json.points.length; i < l; i ++ ) { var point = json.points[ i ]; this.points.push( new Vector3().fromArray( point ) ); } this.closed = json.closed; this.curveType = json.curveType; this.tension = json.tension; return this; }; /** * Bezier Curves formulas obtained from * http://en.wikipedia.org/wiki/Bézier_curve */ function CatmullRom( t, p0, p1, p2, p3 ) { var v0 = ( p2 - p0 ) * 0.5; var v1 = ( p3 - p1 ) * 0.5; var t2 = t * t; var t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } // function QuadraticBezierP0( t, p ) { var k = 1 - t; return k * k * p; } function QuadraticBezierP1( t, p ) { return 2 * ( 1 - t ) * t * p; } function QuadraticBezierP2( t, p ) { return t * t * p; } function QuadraticBezier( t, p0, p1, p2 ) { return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) + QuadraticBezierP2( t, p2 ); } // function CubicBezierP0( t, p ) { var k = 1 - t; return k * k * k * p; } function CubicBezierP1( t, p ) { var k = 1 - t; return 3 * k * k * t * p; } function CubicBezierP2( t, p ) { return 3 * ( 1 - t ) * t * t * p; } function CubicBezierP3( t, p ) { return t * t * t * p; } function CubicBezier( t, p0, p1, p2, p3 ) { return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) + CubicBezierP3( t, p3 ); } function CubicBezierCurve( v0, v1, v2, v3 ) { Curve.call( this ); this.type = 'CubicBezierCurve'; this.v0 = v0 || new Vector2(); this.v1 = v1 || new Vector2(); this.v2 = v2 || new Vector2(); this.v3 = v3 || new Vector2(); } CubicBezierCurve.prototype = Object.create( Curve.prototype ); CubicBezierCurve.prototype.constructor = CubicBezierCurve; CubicBezierCurve.prototype.isCubicBezierCurve = true; CubicBezierCurve.prototype.getPoint = function ( t, optionalTarget ) { var point = optionalTarget || new Vector2(); var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ) ); return point; }; CubicBezierCurve.prototype.copy = function ( source ) { Curve.prototype.copy.call( this, source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; }; CubicBezierCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call( this ); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; }; CubicBezierCurve.prototype.fromJSON = function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; }; function CubicBezierCurve3( v0, v1, v2, v3 ) { Curve.call( this ); this.type = 'CubicBezierCurve3'; this.v0 = v0 || new Vector3(); this.v1 = v1 || new Vector3(); this.v2 = v2 || new Vector3(); this.v3 = v3 || new Vector3(); } CubicBezierCurve3.prototype = Object.create( Curve.prototype ); CubicBezierCurve3.prototype.constructor = CubicBezierCurve3; CubicBezierCurve3.prototype.isCubicBezierCurve3 = true; CubicBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) { var point = optionalTarget || new Vector3(); var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ), CubicBezier( t, v0.z, v1.z, v2.z, v3.z ) ); return point; }; CubicBezierCurve3.prototype.copy = function ( source ) { Curve.prototype.copy.call( this, source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; }; CubicBezierCurve3.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call( this ); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; }; CubicBezierCurve3.prototype.fromJSON = function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; }; function LineCurve( v1, v2 ) { Curve.call( this ); this.type = 'LineCurve'; this.v1 = v1 || new Vector2(); this.v2 = v2 || new Vector2(); } LineCurve.prototype = Object.create( Curve.prototype ); LineCurve.prototype.constructor = LineCurve; LineCurve.prototype.isLineCurve = true; LineCurve.prototype.getPoint = function ( t, optionalTarget ) { var point = optionalTarget || new Vector2(); if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; }; // Line curve is linear, so we can overwrite default getPointAt LineCurve.prototype.getPointAt = function ( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); }; LineCurve.prototype.getTangent = function ( t, optionalTarget ) { var tangent = optionalTarget || new Vector2(); tangent.copy( this.v2 ).sub( this.v1 ).normalize(); return tangent; }; LineCurve.prototype.copy = function ( source ) { Curve.prototype.copy.call( this, source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; }; LineCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call( this ); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; }; LineCurve.prototype.fromJSON = function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; }; function LineCurve3( v1, v2 ) { Curve.call( this ); this.type = 'LineCurve3'; this.v1 = v1 || new Vector3(); this.v2 = v2 || new Vector3(); } LineCurve3.prototype = Object.create( Curve.prototype ); LineCurve3.prototype.constructor = LineCurve3; LineCurve3.prototype.isLineCurve3 = true; LineCurve3.prototype.getPoint = function ( t, optionalTarget ) { var point = optionalTarget || new Vector3(); if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; }; // Line curve is linear, so we can overwrite default getPointAt LineCurve3.prototype.getPointAt = function ( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); }; LineCurve3.prototype.copy = function ( source ) { Curve.prototype.copy.call( this, source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; }; LineCurve3.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call( this ); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; }; LineCurve3.prototype.fromJSON = function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; }; function QuadraticBezierCurve( v0, v1, v2 ) { Curve.call( this ); this.type = 'QuadraticBezierCurve'; this.v0 = v0 || new Vector2(); this.v1 = v1 || new Vector2(); this.v2 = v2 || new Vector2(); } QuadraticBezierCurve.prototype = Object.create( Curve.prototype ); QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve; QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true; QuadraticBezierCurve.prototype.getPoint = function ( t, optionalTarget ) { var point = optionalTarget || new Vector2(); var v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ) ); return point; }; QuadraticBezierCurve.prototype.copy = function ( source ) { Curve.prototype.copy.call( this, source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; }; QuadraticBezierCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call( this ); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; }; QuadraticBezierCurve.prototype.fromJSON = function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; }; function QuadraticBezierCurve3( v0, v1, v2 ) { Curve.call( this ); this.type = 'QuadraticBezierCurve3'; this.v0 = v0 || new Vector3(); this.v1 = v1 || new Vector3(); this.v2 = v2 || new Vector3(); } QuadraticBezierCurve3.prototype = Object.create( Curve.prototype ); QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3; QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true; QuadraticBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) { var point = optionalTarget || new Vector3(); var v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ), QuadraticBezier( t, v0.z, v1.z, v2.z ) ); return point; }; QuadraticBezierCurve3.prototype.copy = function ( source ) { Curve.prototype.copy.call( this, source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; }; QuadraticBezierCurve3.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call( this ); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; }; QuadraticBezierCurve3.prototype.fromJSON = function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; }; function SplineCurve( points ) { Curve.call( this ); this.type = 'SplineCurve'; this.points = points || []; } SplineCurve.prototype = Object.create( Curve.prototype ); SplineCurve.prototype.constructor = SplineCurve; SplineCurve.prototype.isSplineCurve = true; SplineCurve.prototype.getPoint = function ( t, optionalTarget ) { var point = optionalTarget || new Vector2(); var points = this.points; var p = ( points.length - 1 ) * t; var intPoint = Math.floor( p ); var weight = p - intPoint; var p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; var p1 = points[ intPoint ]; var p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; var p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; point.set( CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ), CatmullRom( weight, p0.y, p1.y, p2.y, p3.y ) ); return point; }; SplineCurve.prototype.copy = function ( source ) { Curve.prototype.copy.call( this, source ); this.points = []; for ( var i = 0, l = source.points.length; i < l; i ++ ) { var point = source.points[ i ]; this.points.push( point.clone() ); } return this; }; SplineCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call( this ); data.points = []; for ( var i = 0, l = this.points.length; i < l; i ++ ) { var point = this.points[ i ]; data.points.push( point.toArray() ); } return data; }; SplineCurve.prototype.fromJSON = function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.points = []; for ( var i = 0, l = json.points.length; i < l; i ++ ) { var point = json.points[ i ]; this.points.push( new Vector2().fromArray( point ) ); } return this; }; var Curves = /*#__PURE__*/Object.freeze({ __proto__: null, ArcCurve: ArcCurve, CatmullRomCurve3: CatmullRomCurve3, CubicBezierCurve: CubicBezierCurve, CubicBezierCurve3: CubicBezierCurve3, EllipseCurve: EllipseCurve, LineCurve: LineCurve, LineCurve3: LineCurve3, QuadraticBezierCurve: QuadraticBezierCurve, QuadraticBezierCurve3: QuadraticBezierCurve3, SplineCurve: SplineCurve }); /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ function CurvePath() { Curve.call( this ); this.type = 'CurvePath'; this.curves = []; this.autoClose = false; // Automatically closes the path } CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), { constructor: CurvePath, add: function ( curve ) { this.curves.push( curve ); }, closePath: function () { // Add a line curve if start and end of lines are not connected var startPoint = this.curves[ 0 ].getPoint( 0 ); var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); if ( ! startPoint.equals( endPoint ) ) { this.curves.push( new LineCurve( endPoint, startPoint ) ); } }, // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint: function ( t ) { var d = t * this.getLength(); var curveLengths = this.getCurveLengths(); var i = 0; // To think about boundaries points. while ( i < curveLengths.length ) { if ( curveLengths[ i ] >= d ) { var diff = curveLengths[ i ] - d; var curve = this.curves[ i ]; var segmentLength = curve.getLength(); var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; return curve.getPointAt( u ); } i ++; } return null; // loop where sum != 0, sum > d , sum+1 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) { points.push( points[ 0 ] ); } return points; }, copy: function ( source ) { Curve.prototype.copy.call( this, source ); this.curves = []; for ( var i = 0, l = source.curves.length; i < l; i ++ ) { var curve = source.curves[ i ]; this.curves.push( curve.clone() ); } this.autoClose = source.autoClose; return this; }, toJSON: function () { var data = Curve.prototype.toJSON.call( this ); data.autoClose = this.autoClose; data.curves = []; for ( var i = 0, l = this.curves.length; i < l; i ++ ) { var curve = this.curves[ i ]; data.curves.push( curve.toJSON() ); } return data; }, fromJSON: function ( json ) { Curve.prototype.fromJSON.call( this, json ); this.autoClose = json.autoClose; this.curves = []; for ( var i = 0, l = json.curves.length; i < l; i ++ ) { var curve = json.curves[ i ]; this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) ); } return this; } } ); function Path( points ) { CurvePath.call( this ); this.type = 'Path'; this.currentPoint = new Vector2(); if ( points ) { this.setFromPoints( points ); } } Path.prototype = Object.assign( Object.create( CurvePath.prototype ), { constructor: Path, setFromPoints: function ( points ) { this.moveTo( points[ 0 ].x, points[ 0 ].y ); for ( var i = 1, l = points.length; i < l; i ++ ) { this.lineTo( points[ i ].x, points[ i ].y ); } return this; }, moveTo: function ( x, y ) { this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying? return this; }, lineTo: function ( x, y ) { var curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) ); this.curves.push( curve ); this.currentPoint.set( x, y ); return this; }, quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) { var curve = new QuadraticBezierCurve( this.currentPoint.clone(), new Vector2( aCPx, aCPy ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); return this; }, bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { var curve = new CubicBezierCurve( this.currentPoint.clone(), new Vector2( aCP1x, aCP1y ), new Vector2( aCP2x, aCP2y ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); return this; }, splineThru: function ( pts /*Array of Vector*/ ) { var npts = [ this.currentPoint.clone() ].concat( pts ); var curve = new SplineCurve( npts ); this.curves.push( curve ); this.currentPoint.copy( pts[ pts.length - 1 ] ); return this; }, arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { var x0 = this.currentPoint.x; var y0 = this.currentPoint.y; this.absarc( aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise ); return this; }, absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); return this; }, ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { var x0 = this.currentPoint.x; var y0 = this.currentPoint.y; this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); return this; }, absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); if ( this.curves.length > 0 ) { // if a previous curve is present, attempt to join var firstPoint = curve.getPoint( 0 ); if ( ! firstPoint.equals( this.currentPoint ) ) { this.lineTo( firstPoint.x, firstPoint.y ); } } this.curves.push( curve ); var lastPoint = curve.getPoint( 1 ); this.currentPoint.copy( lastPoint ); return this; }, copy: function ( source ) { CurvePath.prototype.copy.call( this, source ); this.currentPoint.copy( source.currentPoint ); return this; }, toJSON: function () { var data = CurvePath.prototype.toJSON.call( this ); data.currentPoint = this.currentPoint.toArray(); return data; }, fromJSON: function ( json ) { CurvePath.prototype.fromJSON.call( this, json ); this.currentPoint.fromArray( json.currentPoint ); return this; } } ); function Shape( points ) { Path.call( this, points ); this.uuid = MathUtils.generateUUID(); this.type = 'Shape'; this.holes = []; } Shape.prototype = Object.assign( Object.create( Path.prototype ), { constructor: Shape, getPointsHoles: function ( divisions ) { var holesPts = []; for ( var i = 0, l = this.holes.length; i < l; i ++ ) { holesPts[ i ] = this.holes[ i ].getPoints( divisions ); } return holesPts; }, // get points of shape and holes (keypoints based on segments parameter) extractPoints: function ( divisions ) { return { shape: this.getPoints( divisions ), holes: this.getPointsHoles( divisions ) }; }, copy: function ( source ) { Path.prototype.copy.call( this, source ); this.holes = []; for ( var i = 0, l = source.holes.length; i < l; i ++ ) { var hole = source.holes[ i ]; this.holes.push( hole.clone() ); } return this; }, toJSON: function () { var data = Path.prototype.toJSON.call( this ); data.uuid = this.uuid; data.holes = []; for ( var i = 0, l = this.holes.length; i < l; i ++ ) { var hole = this.holes[ i ]; data.holes.push( hole.toJSON() ); } return data; }, fromJSON: function ( json ) { Path.prototype.fromJSON.call( this, json ); this.uuid = json.uuid; this.holes = []; for ( var i = 0, l = json.holes.length; i < l; i ++ ) { var hole = json.holes[ i ]; this.holes.push( new Path().fromJSON( hole ) ); } return this; } } ); function Light( color, intensity ) { Object3D.call( this ); this.type = 'Light'; this.color = new Color( color ); this.intensity = intensity !== undefined ? intensity : 1; this.receiveShadow = undefined; } Light.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: Light, isLight: true, copy: function ( source ) { Object3D.prototype.copy.call( this, source ); this.color.copy( source.color ); this.intensity = source.intensity; return this; }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if ( this.groundColor !== undefined ) { data.object.groundColor = this.groundColor.getHex(); } if ( this.distance !== undefined ) { data.object.distance = this.distance; } if ( this.angle !== undefined ) { data.object.angle = this.angle; } if ( this.decay !== undefined ) { data.object.decay = this.decay; } if ( this.penumbra !== undefined ) { data.object.penumbra = this.penumbra; } if ( this.shadow !== undefined ) { data.object.shadow = this.shadow.toJSON(); } return data; } } ); function HemisphereLight( skyColor, groundColor, intensity ) { Light.call( this, skyColor, intensity ); this.type = 'HemisphereLight'; this.castShadow = undefined; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.groundColor = new Color( groundColor ); } HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: HemisphereLight, isHemisphereLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.groundColor.copy( source.groundColor ); return this; } } ); function LightShadow( camera ) { this.camera = camera; this.bias = 0; this.normalBias = 0; this.radius = 1; this.mapSize = new Vector2( 512, 512 ); this.map = null; this.mapPass = null; this.matrix = new Matrix4(); this.autoUpdate = true; this.needsUpdate = false; this._frustum = new Frustum(); this._frameExtents = new Vector2( 1, 1 ); this._viewportCount = 1; this._viewports = [ new Vector4( 0, 0, 1, 1 ) ]; } Object.assign( LightShadow.prototype, { _projScreenMatrix: new Matrix4(), _lightPositionWorld: new Vector3(), _lookTarget: new Vector3(), getViewportCount: function () { return this._viewportCount; }, getFrustum: function () { return this._frustum; }, updateMatrices: function ( light ) { var shadowCamera = this.camera, shadowMatrix = this.matrix, projScreenMatrix = this._projScreenMatrix, lookTarget = this._lookTarget, lightPositionWorld = this._lightPositionWorld; lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( lightPositionWorld ); lookTarget.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( lookTarget ); shadowCamera.updateMatrixWorld(); projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); this._frustum.setFromProjectionMatrix( projScreenMatrix ); shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( shadowCamera.projectionMatrix ); shadowMatrix.multiply( shadowCamera.matrixWorldInverse ); }, getViewport: function ( viewportIndex ) { return this._viewports[ viewportIndex ]; }, getFrameExtents: function () { return this._frameExtents; }, copy: function ( source ) { this.camera = source.camera.clone(); this.bias = source.bias; this.radius = source.radius; this.mapSize.copy( source.mapSize ); return this; }, clone: function () { return new this.constructor().copy( this ); }, toJSON: function () { var object = {}; if ( this.bias !== 0 ) { object.bias = this.bias; } if ( this.normalBias !== 0 ) { object.normalBias = this.normalBias; } if ( this.radius !== 1 ) { object.radius = this.radius; } if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) { object.mapSize = this.mapSize.toArray(); } object.camera = this.camera.toJSON( false ).object; delete object.camera.matrix; return object; } } ); function SpotLightShadow() { LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) ); } SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { constructor: SpotLightShadow, isSpotLightShadow: true, updateMatrices: function ( light ) { var camera = this.camera; var fov = MathUtils.RAD2DEG * 2 * light.angle; var aspect = this.mapSize.width / this.mapSize.height; var far = light.distance || camera.far; if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) { camera.fov = fov; camera.aspect = aspect; camera.far = far; camera.updateProjectionMatrix(); } LightShadow.prototype.updateMatrices.call( this, light ); } } ); function SpotLight( color, intensity, distance, angle, penumbra, decay ) { Light.call( this, color, intensity ); this.type = 'SpotLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); Object.defineProperty( this, 'power', { get: function () { // intensity = power per solid angle. // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf return this.intensity * Math.PI; }, set: function ( power ) { // intensity = power per solid angle. // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf this.intensity = power / Math.PI; } } ); this.distance = ( distance !== undefined ) ? distance : 0; this.angle = ( angle !== undefined ) ? angle : Math.PI / 3; this.penumbra = ( penumbra !== undefined ) ? penumbra : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new SpotLightShadow(); } SpotLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: SpotLight, isSpotLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } ); function PointLightShadow() { LightShadow.call( this, new PerspectiveCamera( 90, 1, 0.5, 500 ) ); this._frameExtents = new Vector2( 4, 2 ); this._viewportCount = 6; this._viewports = [ // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X new Vector4( 2, 1, 1, 1 ), // negative X new Vector4( 0, 1, 1, 1 ), // positive Z new Vector4( 3, 1, 1, 1 ), // negative Z new Vector4( 1, 1, 1, 1 ), // positive Y new Vector4( 3, 0, 1, 1 ), // negative Y new Vector4( 1, 0, 1, 1 ) ]; this._cubeDirections = [ new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 ) ]; this._cubeUps = [ new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ) ]; } PointLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { constructor: PointLightShadow, isPointLightShadow: true, updateMatrices: function ( light, viewportIndex ) { if ( viewportIndex === undefined ) { viewportIndex = 0; } var camera = this.camera, shadowMatrix = this.matrix, lightPositionWorld = this._lightPositionWorld, lookTarget = this._lookTarget, projScreenMatrix = this._projScreenMatrix; lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); camera.position.copy( lightPositionWorld ); lookTarget.copy( camera.position ); lookTarget.add( this._cubeDirections[ viewportIndex ] ); camera.up.copy( this._cubeUps[ viewportIndex ] ); camera.lookAt( lookTarget ); camera.updateMatrixWorld(); shadowMatrix.makeTranslation( - lightPositionWorld.x, - lightPositionWorld.y, - lightPositionWorld.z ); projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); this._frustum.setFromProjectionMatrix( projScreenMatrix ); } } ); function PointLight( color, intensity, distance, decay ) { Light.call( this, color, intensity ); this.type = 'PointLight'; Object.defineProperty( this, 'power', { get: function () { // intensity = power per solid angle. // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf return this.intensity * 4 * Math.PI; }, set: function ( power ) { // intensity = power per solid angle. // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf this.intensity = power / ( 4 * Math.PI ); } } ); this.distance = ( distance !== undefined ) ? distance : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. this.shadow = new PointLightShadow(); } PointLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: PointLight, isPointLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; } } ); function OrthographicCamera( left, right, top, bottom, near, far ) { Camera.call( this ); this.type = 'OrthographicCamera'; this.zoom = 1; this.view = null; this.left = ( left !== undefined ) ? left : - 1; this.right = ( right !== undefined ) ? right : 1; this.top = ( top !== undefined ) ? top : 1; this.bottom = ( bottom !== undefined ) ? bottom : - 1; this.near = ( near !== undefined ) ? near : 0.1; this.far = ( far !== undefined ) ? far : 2000; this.updateProjectionMatrix(); } OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), { constructor: OrthographicCamera, isOrthographicCamera: true, copy: function ( source, recursive ) { Camera.prototype.copy.call( this, source, recursive ); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign( {}, source.view ); return this; }, setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) { if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); }, clearViewOffset: function () { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); }, updateProjectionMatrix: function () { var dx = ( this.right - this.left ) / ( 2 * this.zoom ); var dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); var cx = ( this.right + this.left ) / 2; var cy = ( this.top + this.bottom ) / 2; var left = cx - dx; var right = cx + dx; var top = cy + dy; var bottom = cy - dy; if ( this.view !== null && this.view.enabled ) { var scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom; var scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom; left += scaleW * this.view.offsetX; right = left + scaleW * this.view.width; top -= scaleH * this.view.offsetY; bottom = top - scaleH * this.view.height; } this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far ); this.projectionMatrixInverse.getInverse( this.projectionMatrix ); }, toJSON: function ( meta ) { var data = Object3D.prototype.toJSON.call( this, meta ); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; if ( this.view !== null ) { data.object.view = Object.assign( {}, this.view ); } return data; } } ); function DirectionalLightShadow() { LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) ); } DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { constructor: DirectionalLightShadow, isDirectionalLightShadow: true, updateMatrices: function ( light ) { LightShadow.prototype.updateMatrices.call( this, light ); } } ); function DirectionalLight( color, intensity ) { Light.call( this, color, intensity ); this.type = 'DirectionalLight'; this.position.copy( Object3D.DefaultUp ); this.updateMatrix(); this.target = new Object3D(); this.shadow = new DirectionalLightShadow(); } DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: DirectionalLight, isDirectionalLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } ); function AmbientLight( color, intensity ) { Light.call( this, color, intensity ); this.type = 'AmbientLight'; this.castShadow = undefined; } AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: AmbientLight, isAmbientLight: true } ); function RectAreaLight( color, intensity, width, height ) { Light.call( this, color, intensity ); this.type = 'RectAreaLight'; this.width = ( width !== undefined ) ? width : 10; this.height = ( height !== undefined ) ? height : 10; } RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), { constructor: RectAreaLight, isRectAreaLight: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.width = source.width; this.height = source.height; return this; }, toJSON: function ( meta ) { var data = Light.prototype.toJSON.call( this, meta ); data.object.width = this.width; data.object.height = this.height; return data; } } ); /** * Primary reference: * https://graphics.stanford.edu/papers/envmap/envmap.pdf * * Secondary reference: * https://www.ppsloan.org/publications/StupidSH36.pdf */ // 3-band SH defined by 9 coefficients var SphericalHarmonics3 = function SphericalHarmonics3() { Object.defineProperty( this, 'isSphericalHarmonics3', { value: true } ); this.coefficients = []; for ( var i = 0; i < 9; i ++ ) { this.coefficients.push( new Vector3() ); } }; SphericalHarmonics3.prototype.set = function set ( coefficients ) { for ( var i = 0; i < 9; i ++ ) { this.coefficients[ i ].copy( coefficients[ i ] ); } return this; }; SphericalHarmonics3.prototype.zero = function zero () { for ( var i = 0; i < 9; i ++ ) { this.coefficients[ i ].set( 0, 0, 0 ); } return this; }; // get the radiance in the direction of the normal // target is a Vector3 SphericalHarmonics3.prototype.getAt = function getAt ( normal, target ) { // normal is assumed to be unit length var x = normal.x, y = normal.y, z = normal.z; var coeff = this.coefficients; // band 0 target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 ); // band 1 target.addScaledVector( coeff[ 1 ], 0.488603 * y ); target.addScaledVector( coeff[ 2 ], 0.488603 * z ); target.addScaledVector( coeff[ 3 ], 0.488603 * x ); // band 2 target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) ); target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) ); target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) ); target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) ); target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) ); return target; }; // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal // target is a Vector3 // https://graphics.stanford.edu/papers/envmap/envmap.pdf SphericalHarmonics3.prototype.getIrradianceAt = function getIrradianceAt ( normal, target ) { // normal is assumed to be unit length var x = normal.x, y = normal.y, z = normal.z; var coeff = this.coefficients; // band 0 target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095 // band 1 target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603 target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z ); target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x ); // band 2 target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548 target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z ); target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3 target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z ); target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274 return target; }; SphericalHarmonics3.prototype.add = function add ( sh ) { for ( var i = 0; i < 9; i ++ ) { this.coefficients[ i ].add( sh.coefficients[ i ] ); } return this; }; SphericalHarmonics3.prototype.addScaledSH = function addScaledSH ( sh, s ) { for ( var i = 0; i < 9; i ++ ) { this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s ); } return this; }; SphericalHarmonics3.prototype.scale = function scale ( s ) { for ( var i = 0; i < 9; i ++ ) { this.coefficients[ i ].multiplyScalar( s ); } return this; }; SphericalHarmonics3.prototype.lerp = function lerp ( sh, alpha ) { for ( var i = 0; i < 9; i ++ ) { this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha ); } return this; }; SphericalHarmonics3.prototype.equals = function equals ( sh ) { for ( var i = 0; i < 9; i ++ ) { if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) { return false; } } return true; }; SphericalHarmonics3.prototype.copy = function copy ( sh ) { return this.set( sh.coefficients ); }; SphericalHarmonics3.prototype.clone = function clone () { return new this.constructor().copy( this ); }; SphericalHarmonics3.prototype.fromArray = function fromArray ( array, offset ) { if ( offset === undefined ) { offset = 0; } var coefficients = this.coefficients; for ( var i = 0; i < 9; i ++ ) { coefficients[ i ].fromArray( array, offset + ( i * 3 ) ); } return this; }; SphericalHarmonics3.prototype.toArray = function toArray ( array, offset ) { if ( array === undefined ) { array = []; } if ( offset === undefined ) { offset = 0; } var coefficients = this.coefficients; for ( var i = 0; i < 9; i ++ ) { coefficients[ i ].toArray( array, offset + ( i * 3 ) ); } return array; }; // evaluate the basis functions // shBasis is an Array[ 9 ] SphericalHarmonics3.getBasisAt = function getBasisAt ( normal, shBasis ) { // normal is assumed to be unit length var x = normal.x, y = normal.y, z = normal.z; // band 0 shBasis[ 0 ] = 0.282095; // band 1 shBasis[ 1 ] = 0.488603 * y; shBasis[ 2 ] = 0.488603 * z; shBasis[ 3 ] = 0.488603 * x; // band 2 shBasis[ 4 ] = 1.092548 * x * y; shBasis[ 5 ] = 1.092548 * y * z; shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 ); shBasis[ 7 ] = 1.092548 * x * z; shBasis[ 8 ] = 0.546274 * ( x * x - y * y ); }; function LightProbe( sh, intensity ) { Light.call( this, undefined, intensity ); this.type = 'LightProbe'; this.sh = ( sh !== undefined ) ? sh : new SphericalHarmonics3(); } LightProbe.prototype = Object.assign( Object.create( Light.prototype ), { constructor: LightProbe, isLightProbe: true, copy: function ( source ) { Light.prototype.copy.call( this, source ); this.sh.copy( source.sh ); return this; }, fromJSON: function ( json ) { this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON(); this.sh.fromArray( json.sh ); return this; }, toJSON: function ( meta ) { var data = Light.prototype.toJSON.call( this, meta ); data.object.sh = this.sh.toArray(); return data; } } ); function MaterialLoader( manager ) { Loader.call( this, manager ); this.textures = {}; } MaterialLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: MaterialLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.load( url, function ( text ) { try { onLoad( scope.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); }, parse: function ( json ) { var textures = this.textures; function getTexture( name ) { if ( textures[ name ] === undefined ) { console.warn( 'THREE.MaterialLoader: Undefined texture', name ); } return textures[ name ]; } var material = new Materials[ json.type ](); if ( json.uuid !== undefined ) { material.uuid = json.uuid; } if ( json.name !== undefined ) { material.name = json.name; } if ( json.color !== undefined ) { material.color.setHex( json.color ); } if ( json.roughness !== undefined ) { material.roughness = json.roughness; } if ( json.metalness !== undefined ) { material.metalness = json.metalness; } if ( json.sheen !== undefined ) { material.sheen = new Color().setHex( json.sheen ); } if ( json.emissive !== undefined ) { material.emissive.setHex( json.emissive ); } if ( json.specular !== undefined ) { material.specular.setHex( json.specular ); } if ( json.shininess !== undefined ) { material.shininess = json.shininess; } if ( json.clearcoat !== undefined ) { material.clearcoat = json.clearcoat; } if ( json.clearcoatRoughness !== undefined ) { material.clearcoatRoughness = json.clearcoatRoughness; } if ( json.fog !== undefined ) { material.fog = json.fog; } if ( json.flatShading !== undefined ) { material.flatShading = json.flatShading; } if ( json.blending !== undefined ) { material.blending = json.blending; } if ( json.combine !== undefined ) { material.combine = json.combine; } if ( json.side !== undefined ) { material.side = json.side; } if ( json.opacity !== undefined ) { material.opacity = json.opacity; } if ( json.transparent !== undefined ) { material.transparent = json.transparent; } if ( json.alphaTest !== undefined ) { material.alphaTest = json.alphaTest; } if ( json.depthTest !== undefined ) { material.depthTest = json.depthTest; } if ( json.depthWrite !== undefined ) { material.depthWrite = json.depthWrite; } if ( json.colorWrite !== undefined ) { material.colorWrite = json.colorWrite; } if ( json.stencilWrite !== undefined ) { material.stencilWrite = json.stencilWrite; } if ( json.stencilWriteMask !== undefined ) { material.stencilWriteMask = json.stencilWriteMask; } if ( json.stencilFunc !== undefined ) { material.stencilFunc = json.stencilFunc; } if ( json.stencilRef !== undefined ) { material.stencilRef = json.stencilRef; } if ( json.stencilFuncMask !== undefined ) { material.stencilFuncMask = json.stencilFuncMask; } if ( json.stencilFail !== undefined ) { material.stencilFail = json.stencilFail; } if ( json.stencilZFail !== undefined ) { material.stencilZFail = json.stencilZFail; } if ( json.stencilZPass !== undefined ) { material.stencilZPass = json.stencilZPass; } if ( json.wireframe !== undefined ) { material.wireframe = json.wireframe; } if ( json.wireframeLinewidth !== undefined ) { material.wireframeLinewidth = json.wireframeLinewidth; } if ( json.wireframeLinecap !== undefined ) { material.wireframeLinecap = json.wireframeLinecap; } if ( json.wireframeLinejoin !== undefined ) { material.wireframeLinejoin = json.wireframeLinejoin; } if ( json.rotation !== undefined ) { material.rotation = json.rotation; } if ( json.linewidth !== 1 ) { material.linewidth = json.linewidth; } if ( json.dashSize !== undefined ) { material.dashSize = json.dashSize; } if ( json.gapSize !== undefined ) { material.gapSize = json.gapSize; } if ( json.scale !== undefined ) { material.scale = json.scale; } if ( json.polygonOffset !== undefined ) { material.polygonOffset = json.polygonOffset; } if ( json.polygonOffsetFactor !== undefined ) { material.polygonOffsetFactor = json.polygonOffsetFactor; } if ( json.polygonOffsetUnits !== undefined ) { material.polygonOffsetUnits = json.polygonOffsetUnits; } if ( json.skinning !== undefined ) { material.skinning = json.skinning; } if ( json.morphTargets !== undefined ) { material.morphTargets = json.morphTargets; } if ( json.morphNormals !== undefined ) { material.morphNormals = json.morphNormals; } if ( json.dithering !== undefined ) { material.dithering = json.dithering; } if ( json.vertexTangents !== undefined ) { material.vertexTangents = json.vertexTangents; } if ( json.visible !== undefined ) { material.visible = json.visible; } if ( json.toneMapped !== undefined ) { material.toneMapped = json.toneMapped; } if ( json.userData !== undefined ) { material.userData = json.userData; } if ( json.vertexColors !== undefined ) { if ( typeof json.vertexColors === 'number' ) { material.vertexColors = ( json.vertexColors > 0 ) ? true : false; } else { material.vertexColors = json.vertexColors; } } // Shader Material if ( json.uniforms !== undefined ) { for ( var name in json.uniforms ) { var uniform = json.uniforms[ name ]; material.uniforms[ name ] = {}; switch ( uniform.type ) { case 't': material.uniforms[ name ].value = getTexture( uniform.value ); break; case 'c': material.uniforms[ name ].value = new Color().setHex( uniform.value ); break; case 'v2': material.uniforms[ name ].value = new Vector2().fromArray( uniform.value ); break; case 'v3': material.uniforms[ name ].value = new Vector3().fromArray( uniform.value ); break; case 'v4': material.uniforms[ name ].value = new Vector4().fromArray( uniform.value ); break; case 'm3': material.uniforms[ name ].value = new Matrix3().fromArray( uniform.value ); break; case 'm4': material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value ); break; default: material.uniforms[ name ].value = uniform.value; } } } if ( json.defines !== undefined ) { material.defines = json.defines; } if ( json.vertexShader !== undefined ) { material.vertexShader = json.vertexShader; } if ( json.fragmentShader !== undefined ) { material.fragmentShader = json.fragmentShader; } if ( json.extensions !== undefined ) { for ( var key in json.extensions ) { material.extensions[ key ] = json.extensions[ key ]; } } // Deprecated if ( json.shading !== undefined ) { material.flatShading = json.shading === 1; } // THREE.FlatShading // for PointsMaterial if ( json.size !== undefined ) { material.size = json.size; } if ( json.sizeAttenuation !== undefined ) { material.sizeAttenuation = json.sizeAttenuation; } // maps if ( json.map !== undefined ) { material.map = getTexture( json.map ); } if ( json.matcap !== undefined ) { material.matcap = getTexture( json.matcap ); } if ( json.alphaMap !== undefined ) { material.alphaMap = getTexture( json.alphaMap ); } if ( json.bumpMap !== undefined ) { material.bumpMap = getTexture( json.bumpMap ); } if ( json.bumpScale !== undefined ) { material.bumpScale = json.bumpScale; } if ( json.normalMap !== undefined ) { material.normalMap = getTexture( json.normalMap ); } if ( json.normalMapType !== undefined ) { material.normalMapType = json.normalMapType; } if ( json.normalScale !== undefined ) { var normalScale = json.normalScale; if ( Array.isArray( normalScale ) === false ) { // Blender exporter used to export a scalar. See #7459 normalScale = [ normalScale, normalScale ]; } material.normalScale = new Vector2().fromArray( normalScale ); } if ( json.displacementMap !== undefined ) { material.displacementMap = getTexture( json.displacementMap ); } if ( json.displacementScale !== undefined ) { material.displacementScale = json.displacementScale; } if ( json.displacementBias !== undefined ) { material.displacementBias = json.displacementBias; } if ( json.roughnessMap !== undefined ) { material.roughnessMap = getTexture( json.roughnessMap ); } if ( json.metalnessMap !== undefined ) { material.metalnessMap = getTexture( json.metalnessMap ); } if ( json.emissiveMap !== undefined ) { material.emissiveMap = getTexture( json.emissiveMap ); } if ( json.emissiveIntensity !== undefined ) { material.emissiveIntensity = json.emissiveIntensity; } if ( json.specularMap !== undefined ) { material.specularMap = getTexture( json.specularMap ); } if ( json.envMap !== undefined ) { material.envMap = getTexture( json.envMap ); } if ( json.envMapIntensity !== undefined ) { material.envMapIntensity = json.envMapIntensity; } if ( json.reflectivity !== undefined ) { material.reflectivity = json.reflectivity; } if ( json.refractionRatio !== undefined ) { material.refractionRatio = json.refractionRatio; } if ( json.lightMap !== undefined ) { material.lightMap = getTexture( json.lightMap ); } if ( json.lightMapIntensity !== undefined ) { material.lightMapIntensity = json.lightMapIntensity; } if ( json.aoMap !== undefined ) { material.aoMap = getTexture( json.aoMap ); } if ( json.aoMapIntensity !== undefined ) { material.aoMapIntensity = json.aoMapIntensity; } if ( json.gradientMap !== undefined ) { material.gradientMap = getTexture( json.gradientMap ); } if ( json.clearcoatMap !== undefined ) { material.clearcoatMap = getTexture( json.clearcoatMap ); } if ( json.clearcoatRoughnessMap !== undefined ) { material.clearcoatRoughnessMap = getTexture( json.clearcoatRoughnessMap ); } if ( json.clearcoatNormalMap !== undefined ) { material.clearcoatNormalMap = getTexture( json.clearcoatNormalMap ); } if ( json.clearcoatNormalScale !== undefined ) { material.clearcoatNormalScale = new Vector2().fromArray( json.clearcoatNormalScale ); } if ( json.transmission !== undefined ) { material.transmission = json.transmission; } if ( json.transmissionMap !== undefined ) { material.transmissionMap = getTexture( json.transmissionMap ); } return material; }, setTextures: function ( value ) { this.textures = value; return this; } } ); var LoaderUtils = { decodeText: function ( array ) { if ( typeof TextDecoder !== 'undefined' ) { return new TextDecoder().decode( array ); } // Avoid the String.fromCharCode.apply(null, array) shortcut, which // throws a "maximum call stack size exceeded" error for large arrays. var s = ''; for ( var i = 0, il = array.length; i < il; i ++ ) { // Implicitly assumes little-endian. s += String.fromCharCode( array[ i ] ); } try { // merges multi-byte utf-8 characters. return decodeURIComponent( escape( s ) ); } catch ( e ) { // see #16358 return s; } }, extractUrlBase: function ( url ) { var index = url.lastIndexOf( '/' ); if ( index === - 1 ) { return './'; } return url.substr( 0, index + 1 ); } }; function InstancedBufferGeometry() { BufferGeometry.call( this ); this.type = 'InstancedBufferGeometry'; this.instanceCount = Infinity; } InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), { constructor: InstancedBufferGeometry, isInstancedBufferGeometry: true, copy: function ( source ) { BufferGeometry.prototype.copy.call( this, source ); this.instanceCount = source.instanceCount; return this; }, clone: function () { return new this.constructor().copy( this ); }, toJSON: function () { var data = BufferGeometry.prototype.toJSON.call( this ); data.instanceCount = this.instanceCount; data.isInstancedBufferGeometry = true; return data; } } ); function InstancedBufferAttribute( array, itemSize, normalized, meshPerAttribute ) { if ( typeof ( normalized ) === 'number' ) { meshPerAttribute = normalized; normalized = false; console.error( 'THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.' ); } BufferAttribute.call( this, array, itemSize, normalized ); this.meshPerAttribute = meshPerAttribute || 1; } InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), { constructor: InstancedBufferAttribute, isInstancedBufferAttribute: true, copy: function ( source ) { BufferAttribute.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; }, toJSON: function () { var data = BufferAttribute.prototype.toJSON.call( this ); data.meshPerAttribute = this.meshPerAttribute; data.isInstancedBufferAttribute = true; return data; } } ); function BufferGeometryLoader( manager ) { Loader.call( this, manager ); } BufferGeometryLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: BufferGeometryLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.load( url, function ( text ) { try { onLoad( scope.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); }, parse: function ( json ) { var interleavedBufferMap = {}; var arrayBufferMap = {}; function getInterleavedBuffer( json, uuid ) { if ( interleavedBufferMap[ uuid ] !== undefined ) { return interleavedBufferMap[ uuid ]; } var interleavedBuffers = json.interleavedBuffers; var interleavedBuffer = interleavedBuffers[ uuid ]; var buffer = getArrayBuffer( json, interleavedBuffer.buffer ); var array = new TYPED_ARRAYS[ interleavedBuffer.type ]( buffer ); var ib = new InterleavedBuffer( array, interleavedBuffer.stride ); ib.uuid = interleavedBuffer.uuid; interleavedBufferMap[ uuid ] = ib; return ib; } function getArrayBuffer( json, uuid ) { if ( arrayBufferMap[ uuid ] !== undefined ) { return arrayBufferMap[ uuid ]; } var arrayBuffers = json.arrayBuffers; var arrayBuffer = arrayBuffers[ uuid ]; var ab = new Uint32Array( arrayBuffer ).buffer; arrayBufferMap[ uuid ] = ab; return ab; } var geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry(); var index = json.data.index; if ( index !== undefined ) { var typedArray = new TYPED_ARRAYS[ index.type ]( index.array ); geometry.setIndex( new BufferAttribute( typedArray, 1 ) ); } var attributes = json.data.attributes; for ( var key in attributes ) { var attribute = attributes[ key ]; var bufferAttribute = (void 0); if ( attribute.isInterleavedBufferAttribute ) { var interleavedBuffer = getInterleavedBuffer( json.data, attribute.data ); bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized ); } else { var typedArray$1 = new TYPED_ARRAYS[ attribute.type ]( attribute.array ); var bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute; bufferAttribute = new bufferAttributeConstr( typedArray$1, attribute.itemSize, attribute.normalized ); } if ( attribute.name !== undefined ) { bufferAttribute.name = attribute.name; } geometry.setAttribute( key, bufferAttribute ); } var morphAttributes = json.data.morphAttributes; if ( morphAttributes ) { for ( var key$1 in morphAttributes ) { var attributeArray = morphAttributes[ key$1 ]; var array = []; for ( var i = 0, il = attributeArray.length; i < il; i ++ ) { var attribute$1 = attributeArray[ i ]; var bufferAttribute$1 = (void 0); if ( attribute$1.isInterleavedBufferAttribute ) { var interleavedBuffer$1 = getInterleavedBuffer( json.data, attribute$1.data ); bufferAttribute$1 = new InterleavedBufferAttribute( interleavedBuffer$1, attribute$1.itemSize, attribute$1.offset, attribute$1.normalized ); } else { var typedArray$2 = new TYPED_ARRAYS[ attribute$1.type ]( attribute$1.array ); bufferAttribute$1 = new BufferAttribute( typedArray$2, attribute$1.itemSize, attribute$1.normalized ); } if ( attribute$1.name !== undefined ) { bufferAttribute$1.name = attribute$1.name; } array.push( bufferAttribute$1 ); } geometry.morphAttributes[ key$1 ] = array; } } var morphTargetsRelative = json.data.morphTargetsRelative; if ( morphTargetsRelative ) { geometry.morphTargetsRelative = true; } var groups = json.data.groups || json.data.drawcalls || json.data.offsets; if ( groups !== undefined ) { for ( var i$1 = 0, n = groups.length; i$1 !== n; ++ i$1 ) { var group = groups[ i$1 ]; geometry.addGroup( group.start, group.count, group.materialIndex ); } } var boundingSphere = json.data.boundingSphere; if ( boundingSphere !== undefined ) { var center = new Vector3(); if ( boundingSphere.center !== undefined ) { center.fromArray( boundingSphere.center ); } geometry.boundingSphere = new Sphere( center, boundingSphere.radius ); } if ( json.name ) { geometry.name = json.name; } if ( json.userData ) { geometry.userData = json.userData; } return geometry; } } ); var TYPED_ARRAYS = { Int8Array: Int8Array, Uint8Array: Uint8Array, // Workaround for IE11 pre KB2929437. See #11440 Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array, Int16Array: Int16Array, Uint16Array: Uint16Array, Int32Array: Int32Array, Uint32Array: Uint32Array, Float32Array: Float32Array, Float64Array: Float64Array }; function ObjectLoader( manager ) { Loader.call( this, manager ); } ObjectLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: ObjectLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path; this.resourcePath = this.resourcePath || path; var loader = new FileLoader( scope.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.load( url, function ( text ) { var json = null; try { json = JSON.parse( text ); } catch ( error ) { if ( onError !== undefined ) { onError( error ); } console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message ); return; } var metadata = json.metadata; if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { console.error( 'THREE.ObjectLoader: Can\'t load ' + url ); return; } scope.parse( json, onLoad ); }, onProgress, onError ); }, parse: function ( json, onLoad ) { var shapes = this.parseShape( json.shapes ); var geometries = this.parseGeometries( json.geometries, shapes ); var images = this.parseImages( json.images, function () { if ( onLoad !== undefined ) { onLoad( object ); } } ); var textures = this.parseTextures( json.textures, images ); var materials = this.parseMaterials( json.materials, textures ); var object = this.parseObject( json.object, geometries, materials ); if ( json.animations ) { object.animations = this.parseAnimations( json.animations ); } if ( json.images === undefined || json.images.length === 0 ) { if ( onLoad !== undefined ) { onLoad( object ); } } return object; }, parseShape: function ( json ) { var shapes = {}; if ( json !== undefined ) { for ( var i = 0, l = json.length; i < l; i ++ ) { var shape = new Shape().fromJSON( json[ i ] ); shapes[ shape.uuid ] = shape; } } return shapes; }, parseGeometries: function ( json, shapes ) { var geometries = {}; var geometryShapes; if ( json !== undefined ) { var bufferGeometryLoader = new BufferGeometryLoader(); for ( var i = 0, l = json.length; i < l; i ++ ) { var geometry = (void 0); var data = json[ i ]; switch ( data.type ) { case 'PlaneGeometry': case 'PlaneBufferGeometry': geometry = new Geometries[ data.type ]( data.width, data.height, data.widthSegments, data.heightSegments ); break; case 'BoxGeometry': case 'BoxBufferGeometry': case 'CubeGeometry': // backwards compatible geometry = new Geometries[ data.type ]( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); break; case 'CircleGeometry': case 'CircleBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.segments, data.thetaStart, data.thetaLength ); break; case 'CylinderGeometry': case 'CylinderBufferGeometry': geometry = new Geometries[ data.type ]( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); break; case 'ConeGeometry': case 'ConeBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); break; case 'SphereGeometry': case 'SphereBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); break; case 'DodecahedronGeometry': case 'DodecahedronBufferGeometry': case 'IcosahedronGeometry': case 'IcosahedronBufferGeometry': case 'OctahedronGeometry': case 'OctahedronBufferGeometry': case 'TetrahedronGeometry': case 'TetrahedronBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.detail ); break; case 'RingGeometry': case 'RingBufferGeometry': geometry = new Geometries[ data.type ]( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength ); break; case 'TorusGeometry': case 'TorusBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ); break; case 'TorusKnotGeometry': case 'TorusKnotBufferGeometry': geometry = new Geometries[ data.type ]( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q ); break; case 'TubeGeometry': case 'TubeBufferGeometry': // This only works for built-in curves (e.g. CatmullRomCurve3). // User defined curves or instances of CurvePath will not be deserialized. geometry = new Geometries[ data.type ]( new Curves[ data.path.type ]().fromJSON( data.path ), data.tubularSegments, data.radius, data.radialSegments, data.closed ); break; case 'LatheGeometry': case 'LatheBufferGeometry': geometry = new Geometries[ data.type ]( data.points, data.segments, data.phiStart, data.phiLength ); break; case 'PolyhedronGeometry': case 'PolyhedronBufferGeometry': geometry = new Geometries[ data.type ]( data.vertices, data.indices, data.radius, data.details ); break; case 'ShapeGeometry': case 'ShapeBufferGeometry': geometryShapes = []; for ( var j = 0, jl = data.shapes.length; j < jl; j ++ ) { var shape = shapes[ data.shapes[ j ] ]; geometryShapes.push( shape ); } geometry = new Geometries[ data.type ]( geometryShapes, data.curveSegments ); break; case 'ExtrudeGeometry': case 'ExtrudeBufferGeometry': geometryShapes = []; for ( var j$1 = 0, jl$1 = data.shapes.length; j$1 < jl$1; j$1 ++ ) { var shape$1 = shapes[ data.shapes[ j$1 ] ]; geometryShapes.push( shape$1 ); } var extrudePath = data.options.extrudePath; if ( extrudePath !== undefined ) { data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath ); } geometry = new Geometries[ data.type ]( geometryShapes, data.options ); break; case 'BufferGeometry': case 'InstancedBufferGeometry': geometry = bufferGeometryLoader.parse( data ); break; case 'Geometry': console.error( 'THREE.ObjectLoader: Loading "Geometry" is not supported anymore.' ); break; default: console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' ); continue; } geometry.uuid = data.uuid; if ( data.name !== undefined ) { geometry.name = data.name; } if ( geometry.isBufferGeometry === true && data.userData !== undefined ) { geometry.userData = data.userData; } geometries[ data.uuid ] = geometry; } } return geometries; }, parseMaterials: function ( json, textures ) { var cache = {}; // MultiMaterial var materials = {}; if ( json !== undefined ) { var loader = new MaterialLoader(); loader.setTextures( textures ); for ( var i = 0, l = json.length; i < l; i ++ ) { var data = json[ i ]; if ( data.type === 'MultiMaterial' ) { // Deprecated var array = []; for ( var j = 0; j < data.materials.length; j ++ ) { var material = data.materials[ j ]; if ( cache[ material.uuid ] === undefined ) { cache[ material.uuid ] = loader.parse( material ); } array.push( cache[ material.uuid ] ); } materials[ data.uuid ] = array; } else { if ( cache[ data.uuid ] === undefined ) { cache[ data.uuid ] = loader.parse( data ); } materials[ data.uuid ] = cache[ data.uuid ]; } } } return materials; }, parseAnimations: function ( json ) { var animations = []; for ( var i = 0; i < json.length; i ++ ) { var data = json[ i ]; var clip = AnimationClip.parse( data ); if ( data.uuid !== undefined ) { clip.uuid = data.uuid; } animations.push( clip ); } return animations; }, parseImages: function ( json, onLoad ) { var scope = this; var images = {}; var loader; function loadImage( url ) { scope.manager.itemStart( url ); return loader.load( url, function () { scope.manager.itemEnd( url ); }, undefined, function () { scope.manager.itemError( url ); scope.manager.itemEnd( url ); } ); } if ( json !== undefined && json.length > 0 ) { var manager = new LoadingManager( onLoad ); loader = new ImageLoader( manager ); loader.setCrossOrigin( this.crossOrigin ); for ( var i = 0, il = json.length; i < il; i ++ ) { var image = json[ i ]; var url = image.url; if ( Array.isArray( url ) ) { // load array of images e.g CubeTexture images[ image.uuid ] = []; for ( var j = 0, jl = url.length; j < jl; j ++ ) { var currentUrl = url[ j ]; var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( currentUrl ) ? currentUrl : scope.resourcePath + currentUrl; images[ image.uuid ].push( loadImage( path ) ); } } else { // load single image var path$1 = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.resourcePath + image.url; images[ image.uuid ] = loadImage( path$1 ); } } } return images; }, parseTextures: function ( json, images ) { function parseConstant( value, type ) { if ( typeof value === 'number' ) { return value; } console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value ); return type[ value ]; } var textures = {}; if ( json !== undefined ) { for ( var i = 0, l = json.length; i < l; i ++ ) { var data = json[ i ]; if ( data.image === undefined ) { console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid ); } if ( images[ data.image ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined image', data.image ); } var texture = (void 0); if ( Array.isArray( images[ data.image ] ) ) { texture = new CubeTexture( images[ data.image ] ); } else { texture = new Texture( images[ data.image ] ); } texture.needsUpdate = true; texture.uuid = data.uuid; if ( data.name !== undefined ) { texture.name = data.name; } if ( data.mapping !== undefined ) { texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING ); } if ( data.offset !== undefined ) { texture.offset.fromArray( data.offset ); } if ( data.repeat !== undefined ) { texture.repeat.fromArray( data.repeat ); } if ( data.center !== undefined ) { texture.center.fromArray( data.center ); } if ( data.rotation !== undefined ) { texture.rotation = data.rotation; } if ( data.wrap !== undefined ) { texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING ); texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING ); } if ( data.format !== undefined ) { texture.format = data.format; } if ( data.type !== undefined ) { texture.type = data.type; } if ( data.encoding !== undefined ) { texture.encoding = data.encoding; } if ( data.minFilter !== undefined ) { texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER ); } if ( data.magFilter !== undefined ) { texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER ); } if ( data.anisotropy !== undefined ) { texture.anisotropy = data.anisotropy; } if ( data.flipY !== undefined ) { texture.flipY = data.flipY; } if ( data.premultiplyAlpha !== undefined ) { texture.premultiplyAlpha = data.premultiplyAlpha; } if ( data.unpackAlignment !== undefined ) { texture.unpackAlignment = data.unpackAlignment; } textures[ data.uuid ] = texture; } } return textures; }, parseObject: function ( data, geometries, materials ) { var object; function getGeometry( name ) { if ( geometries[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined geometry', name ); } return geometries[ name ]; } function getMaterial( name ) { if ( name === undefined ) { return undefined; } if ( Array.isArray( name ) ) { var array = []; for ( var i = 0, l = name.length; i < l; i ++ ) { var uuid = name[ i ]; if ( materials[ uuid ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', uuid ); } array.push( materials[ uuid ] ); } return array; } if ( materials[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', name ); } return materials[ name ]; } var geometry, material; switch ( data.type ) { case 'Scene': object = new Scene(); if ( data.background !== undefined ) { if ( Number.isInteger( data.background ) ) { object.background = new Color( data.background ); } } if ( data.fog !== undefined ) { if ( data.fog.type === 'Fog' ) { object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far ); } else if ( data.fog.type === 'FogExp2' ) { object.fog = new FogExp2( data.fog.color, data.fog.density ); } } break; case 'PerspectiveCamera': object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); if ( data.focus !== undefined ) { object.focus = data.focus; } if ( data.zoom !== undefined ) { object.zoom = data.zoom; } if ( data.filmGauge !== undefined ) { object.filmGauge = data.filmGauge; } if ( data.filmOffset !== undefined ) { object.filmOffset = data.filmOffset; } if ( data.view !== undefined ) { object.view = Object.assign( {}, data.view ); } break; case 'OrthographicCamera': object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); if ( data.zoom !== undefined ) { object.zoom = data.zoom; } if ( data.view !== undefined ) { object.view = Object.assign( {}, data.view ); } break; case 'AmbientLight': object = new AmbientLight( data.color, data.intensity ); break; case 'DirectionalLight': object = new DirectionalLight( data.color, data.intensity ); break; case 'PointLight': object = new PointLight( data.color, data.intensity, data.distance, data.decay ); break; case 'RectAreaLight': object = new RectAreaLight( data.color, data.intensity, data.width, data.height ); break; case 'SpotLight': object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay ); break; case 'HemisphereLight': object = new HemisphereLight( data.color, data.groundColor, data.intensity ); break; case 'LightProbe': object = new LightProbe().fromJSON( data ); break; case 'SkinnedMesh': console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' ); case 'Mesh': geometry = getGeometry( data.geometry ); material = getMaterial( data.material ); object = new Mesh( geometry, material ); break; case 'InstancedMesh': geometry = getGeometry( data.geometry ); material = getMaterial( data.material ); var count = data.count; var instanceMatrix = data.instanceMatrix; object = new InstancedMesh( geometry, material, count ); object.instanceMatrix = new BufferAttribute( new Float32Array( instanceMatrix.array ), 16 ); break; case 'LOD': object = new LOD(); break; case 'Line': object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode ); break; case 'LineLoop': object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'LineSegments': object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'PointCloud': case 'Points': object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'Sprite': object = new Sprite( getMaterial( data.material ) ); break; case 'Group': object = new Group(); break; default: object = new Object3D(); } object.uuid = data.uuid; if ( data.name !== undefined ) { object.name = data.name; } if ( data.matrix !== undefined ) { object.matrix.fromArray( data.matrix ); if ( data.matrixAutoUpdate !== undefined ) { object.matrixAutoUpdate = data.matrixAutoUpdate; } if ( object.matrixAutoUpdate ) { object.matrix.decompose( object.position, object.quaternion, object.scale ); } } else { if ( data.position !== undefined ) { object.position.fromArray( data.position ); } if ( data.rotation !== undefined ) { object.rotation.fromArray( data.rotation ); } if ( data.quaternion !== undefined ) { object.quaternion.fromArray( data.quaternion ); } if ( data.scale !== undefined ) { object.scale.fromArray( data.scale ); } } if ( data.castShadow !== undefined ) { object.castShadow = data.castShadow; } if ( data.receiveShadow !== undefined ) { object.receiveShadow = data.receiveShadow; } if ( data.shadow ) { if ( data.shadow.bias !== undefined ) { object.shadow.bias = data.shadow.bias; } if ( data.shadow.normalBias !== undefined ) { object.shadow.normalBias = data.shadow.normalBias; } if ( data.shadow.radius !== undefined ) { object.shadow.radius = data.shadow.radius; } if ( data.shadow.mapSize !== undefined ) { object.shadow.mapSize.fromArray( data.shadow.mapSize ); } if ( data.shadow.camera !== undefined ) { object.shadow.camera = this.parseObject( data.shadow.camera ); } } if ( data.visible !== undefined ) { object.visible = data.visible; } if ( data.frustumCulled !== undefined ) { object.frustumCulled = data.frustumCulled; } if ( data.renderOrder !== undefined ) { object.renderOrder = data.renderOrder; } if ( data.userData !== undefined ) { object.userData = data.userData; } if ( data.layers !== undefined ) { object.layers.mask = data.layers; } if ( data.children !== undefined ) { var children = data.children; for ( var i = 0; i < children.length; i ++ ) { object.add( this.parseObject( children[ i ], geometries, materials ) ); } } if ( data.type === 'LOD' ) { if ( data.autoUpdate !== undefined ) { object.autoUpdate = data.autoUpdate; } var levels = data.levels; for ( var l = 0; l < levels.length; l ++ ) { var level = levels[ l ]; var child = object.getObjectByProperty( 'uuid', level.object ); if ( child !== undefined ) { object.addLevel( child, level.distance ); } } } return object; } } ); var TEXTURE_MAPPING = { UVMapping: UVMapping, CubeReflectionMapping: CubeReflectionMapping, CubeRefractionMapping: CubeRefractionMapping, EquirectangularReflectionMapping: EquirectangularReflectionMapping, EquirectangularRefractionMapping: EquirectangularRefractionMapping, CubeUVReflectionMapping: CubeUVReflectionMapping, CubeUVRefractionMapping: CubeUVRefractionMapping }; var TEXTURE_WRAPPING = { RepeatWrapping: RepeatWrapping, ClampToEdgeWrapping: ClampToEdgeWrapping, MirroredRepeatWrapping: MirroredRepeatWrapping }; var TEXTURE_FILTER = { NearestFilter: NearestFilter, NearestMipmapNearestFilter: NearestMipmapNearestFilter, NearestMipmapLinearFilter: NearestMipmapLinearFilter, LinearFilter: LinearFilter, LinearMipmapNearestFilter: LinearMipmapNearestFilter, LinearMipmapLinearFilter: LinearMipmapLinearFilter }; function ImageBitmapLoader( manager ) { if ( typeof createImageBitmap === 'undefined' ) { console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' ); } if ( typeof fetch === 'undefined' ) { console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' ); } Loader.call( this, manager ); this.options = { premultiplyAlpha: 'none' }; } ImageBitmapLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: ImageBitmapLoader, isImageBitmapLoader: true, setOptions: function setOptions( options ) { this.options = options; return this; }, load: function ( url, onLoad, onProgress, onError ) { if ( url === undefined ) { url = ''; } if ( this.path !== undefined ) { url = this.path + url; } url = this.manager.resolveURL( url ); var scope = this; var cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) { onLoad( cached ); } scope.manager.itemEnd( url ); }, 0 ); return cached; } fetch( url ).then( function ( res ) { return res.blob(); } ).then( function ( blob ) { return createImageBitmap( blob, scope.options ); } ).then( function ( imageBitmap ) { Cache.add( url, imageBitmap ); if ( onLoad ) { onLoad( imageBitmap ); } scope.manager.itemEnd( url ); } ).catch( function ( e ) { if ( onError ) { onError( e ); } scope.manager.itemError( url ); scope.manager.itemEnd( url ); } ); scope.manager.itemStart( url ); } } ); function ShapePath() { this.type = 'ShapePath'; this.color = new Color(); this.subPaths = []; this.currentPath = null; } Object.assign( ShapePath.prototype, { moveTo: function ( x, y ) { this.currentPath = new Path(); this.subPaths.push( this.currentPath ); this.currentPath.moveTo( x, y ); return this; }, lineTo: function ( x, y ) { this.currentPath.lineTo( x, y ); return this; }, quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) { this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY ); return this; }, bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ); return this; }, splineThru: function ( pts ) { this.currentPath.splineThru( pts ); return this; }, toShapes: function ( isCCW, noHoles ) { function toShapesNoHoles( inSubpaths ) { var shapes = []; for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) { var tmpPath = inSubpaths[ i ]; var tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); } return shapes; } function isPointInsidePolygon( inPt, inPolygon ) { var polyLen = inPolygon.length; // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line var inside = false; for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { var edgeLowPt = inPolygon[ p ]; var edgeHighPt = inPolygon[ q ]; var edgeDx = edgeHighPt.x - edgeLowPt.x; var edgeDy = edgeHighPt.y - edgeLowPt.y; if ( Math.abs( edgeDy ) > Number.EPSILON ) { // not parallel if ( edgeDy < 0 ) { edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; } if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) { continue; } if ( inPt.y === edgeLowPt.y ) { if ( inPt.x === edgeLowPt.x ) { return true; } // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); if ( perpEdge === 0 ) { return true; } // inPt is on contour ? if ( perpEdge < 0 ) { continue; } inside = ! inside; // true intersection left of inPt } } else { // parallel or collinear if ( inPt.y !== edgeLowPt.y ) { continue; } // parallel // edge lies on the same horizontal line as inPt if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) { return true; } // inPt: Point on contour ! // continue; } } return inside; } var isClockWise = ShapeUtils.isClockWise; var subPaths = this.subPaths; if ( subPaths.length === 0 ) { return []; } if ( noHoles === true ) { return toShapesNoHoles( subPaths ); } var solid, tmpPath, tmpShape; var shapes = []; if ( subPaths.length === 1 ) { tmpPath = subPaths[ 0 ]; tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); return shapes; } var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); holesFirst = isCCW ? ! holesFirst : holesFirst; // console.log("Holes first", holesFirst); var betterShapeHoles = []; var newShapes = []; var newShapeHoles = []; var mainIdx = 0; var tmpPoints; newShapes[ mainIdx ] = undefined; newShapeHoles[ mainIdx ] = []; for ( var i = 0, l = subPaths.length; i < l; i ++ ) { tmpPath = subPaths[ i ]; tmpPoints = tmpPath.getPoints(); solid = isClockWise( tmpPoints ); solid = isCCW ? ! solid : solid; if ( solid ) { if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) { mainIdx ++; } newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints }; newShapes[ mainIdx ].s.curves = tmpPath.curves; if ( holesFirst ) { mainIdx ++; } newShapeHoles[ mainIdx ] = []; //console.log('cw', i); } else { newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } ); //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if ( ! newShapes[ 0 ] ) { return toShapesNoHoles( subPaths ); } if ( newShapes.length > 1 ) { var ambiguous = false; var toChange = []; for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { betterShapeHoles[ sIdx ] = []; } for ( var sIdx$1 = 0, sLen$1 = newShapes.length; sIdx$1 < sLen$1; sIdx$1 ++ ) { var sho = newShapeHoles[ sIdx$1 ]; for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) { var ho = sho[ hIdx ]; var hole_unassigned = true; for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) { if ( sIdx$1 !== s2Idx ) { toChange.push( { froms: sIdx$1, tos: s2Idx, hole: hIdx } ); } if ( hole_unassigned ) { hole_unassigned = false; betterShapeHoles[ s2Idx ].push( ho ); } else { ambiguous = true; } } } if ( hole_unassigned ) { betterShapeHoles[ sIdx$1 ].push( ho ); } } } // console.log("ambiguous: ", ambiguous); if ( toChange.length > 0 ) { // console.log("to change: ", toChange); if ( ! ambiguous ) { newShapeHoles = betterShapeHoles; } } } var tmpHoles; for ( var i$1 = 0, il = newShapes.length; i$1 < il; i$1 ++ ) { tmpShape = newShapes[ i$1 ].s; shapes.push( tmpShape ); tmpHoles = newShapeHoles[ i$1 ]; for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) { tmpShape.holes.push( tmpHoles[ j ].h ); } } //console.log("shape", shapes); return shapes; } } ); function Font( data ) { this.type = 'Font'; this.data = data; } Object.assign( Font.prototype, { isFont: true, generateShapes: function ( text, size ) { if ( size === undefined ) { size = 100; } var shapes = []; var paths = createPaths( text, size, this.data ); for ( var p = 0, pl = paths.length; p < pl; p ++ ) { Array.prototype.push.apply( shapes, paths[ p ].toShapes() ); } return shapes; } } ); function createPaths( text, size, data ) { var chars = Array.from ? Array.from( text ) : String( text ).split( '' ); // workaround for IE11, see #13988 var scale = size / data.resolution; var line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale; var paths = []; var offsetX = 0, offsetY = 0; for ( var i = 0; i < chars.length; i ++ ) { var char = chars[ i ]; if ( char === '\n' ) { offsetX = 0; offsetY -= line_height; } else { var ret = createPath( char, scale, offsetX, offsetY, data ); offsetX += ret.offsetX; paths.push( ret.path ); } } return paths; } function createPath( char, scale, offsetX, offsetY, data ) { var glyph = data.glyphs[ char ] || data.glyphs[ '?' ]; if ( ! glyph ) { console.error( 'THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.' ); return; } var path = new ShapePath(); var x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2; if ( glyph.o ) { var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) ); for ( var i = 0, l = outline.length; i < l; ) { var action = outline[ i ++ ]; switch ( action ) { case 'm': // moveTo x = outline[ i ++ ] * scale + offsetX; y = outline[ i ++ ] * scale + offsetY; path.moveTo( x, y ); break; case 'l': // lineTo x = outline[ i ++ ] * scale + offsetX; y = outline[ i ++ ] * scale + offsetY; path.lineTo( x, y ); break; case 'q': // quadraticCurveTo cpx = outline[ i ++ ] * scale + offsetX; cpy = outline[ i ++ ] * scale + offsetY; cpx1 = outline[ i ++ ] * scale + offsetX; cpy1 = outline[ i ++ ] * scale + offsetY; path.quadraticCurveTo( cpx1, cpy1, cpx, cpy ); break; case 'b': // bezierCurveTo cpx = outline[ i ++ ] * scale + offsetX; cpy = outline[ i ++ ] * scale + offsetY; cpx1 = outline[ i ++ ] * scale + offsetX; cpy1 = outline[ i ++ ] * scale + offsetY; cpx2 = outline[ i ++ ] * scale + offsetX; cpy2 = outline[ i ++ ] * scale + offsetY; path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy ); break; } } } return { offsetX: glyph.ha * scale, path: path }; } function FontLoader( manager ) { Loader.call( this, manager ); } FontLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: FontLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.load( url, function ( text ) { var json; try { json = JSON.parse( text ); } catch ( e ) { console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' ); json = JSON.parse( text.substring( 65, text.length - 2 ) ); } var font = scope.parse( json ); if ( onLoad ) { onLoad( font ); } }, onProgress, onError ); }, parse: function ( json ) { return new Font( json ); } } ); var _context; var AudioContext = { getContext: function () { if ( _context === undefined ) { _context = new ( window.AudioContext || window.webkitAudioContext )(); } return _context; }, setContext: function ( value ) { _context = value; } }; function AudioLoader( manager ) { Loader.call( this, manager ); } AudioLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: AudioLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new FileLoader( scope.manager ); loader.setResponseType( 'arraybuffer' ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.load( url, function ( buffer ) { try { // Create a copy of the buffer. The `decodeAudioData` method // detaches the buffer when complete, preventing reuse. var bufferCopy = buffer.slice( 0 ); var context = AudioContext.getContext(); context.decodeAudioData( bufferCopy, function ( audioBuffer ) { onLoad( audioBuffer ); } ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } } ); function HemisphereLightProbe( skyColor, groundColor, intensity ) { LightProbe.call( this, undefined, intensity ); var color1 = new Color().set( skyColor ); var color2 = new Color().set( groundColor ); var sky = new Vector3( color1.r, color1.g, color1.b ); var ground = new Vector3( color2.r, color2.g, color2.b ); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI ); var c0 = Math.sqrt( Math.PI ); var c1 = c0 * Math.sqrt( 0.75 ); this.sh.coefficients[ 0 ].copy( sky ).add( ground ).multiplyScalar( c0 ); this.sh.coefficients[ 1 ].copy( sky ).sub( ground ).multiplyScalar( c1 ); } HemisphereLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), { constructor: HemisphereLightProbe, isHemisphereLightProbe: true, copy: function ( source ) { // modifying colors not currently supported LightProbe.prototype.copy.call( this, source ); return this; }, toJSON: function ( meta ) { var data = LightProbe.prototype.toJSON.call( this, meta ); // data.sh = this.sh.toArray(); // todo return data; } } ); function AmbientLightProbe( color, intensity ) { LightProbe.call( this, undefined, intensity ); var color1 = new Color().set( color ); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI ); this.sh.coefficients[ 0 ].set( color1.r, color1.g, color1.b ).multiplyScalar( 2 * Math.sqrt( Math.PI ) ); } AmbientLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), { constructor: AmbientLightProbe, isAmbientLightProbe: true, copy: function ( source ) { // modifying color not currently supported LightProbe.prototype.copy.call( this, source ); return this; }, toJSON: function ( meta ) { var data = LightProbe.prototype.toJSON.call( this, meta ); // data.sh = this.sh.toArray(); // todo return data; } } ); var _eyeRight = new Matrix4(); var _eyeLeft = new Matrix4(); function StereoCamera() { this.type = 'StereoCamera'; this.aspect = 1; this.eyeSep = 0.064; this.cameraL = new PerspectiveCamera(); this.cameraL.layers.enable( 1 ); this.cameraL.matrixAutoUpdate = false; this.cameraR = new PerspectiveCamera(); this.cameraR.layers.enable( 2 ); this.cameraR.matrixAutoUpdate = false; this._cache = { focus: null, fov: null, aspect: null, near: null, far: null, zoom: null, eyeSep: null }; } Object.assign( StereoCamera.prototype, { update: function ( camera ) { var cache = this._cache; var needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep; if ( needsUpdate ) { cache.focus = camera.focus; cache.fov = camera.fov; cache.aspect = camera.aspect * this.aspect; cache.near = camera.near; cache.far = camera.far; cache.zoom = camera.zoom; cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ var projectionMatrix = camera.projectionMatrix.clone(); var eyeSepHalf = cache.eyeSep / 2; var eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus; var ymax = ( cache.near * Math.tan( MathUtils.DEG2RAD * cache.fov * 0.5 ) ) / cache.zoom; var xmin, xmax; // translate xOffset _eyeLeft.elements[ 12 ] = - eyeSepHalf; _eyeRight.elements[ 12 ] = eyeSepHalf; // for left eye xmin = - ymax * cache.aspect + eyeSepOnProjection; xmax = ymax * cache.aspect + eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraL.projectionMatrix.copy( projectionMatrix ); // for right eye xmin = - ymax * cache.aspect - eyeSepOnProjection; xmax = ymax * cache.aspect - eyeSepOnProjection; projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraR.projectionMatrix.copy( projectionMatrix ); } this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeLeft ); this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeRight ); } } ); var Clock = function Clock( autoStart ) { this.autoStart = ( autoStart !== undefined ) ? autoStart : true; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; }; Clock.prototype.start = function start () { this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732 this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true; }; Clock.prototype.stop = function stop () { this.getElapsedTime(); this.running = false; this.autoStart = false; }; Clock.prototype.getElapsedTime = function getElapsedTime () { this.getDelta(); return this.elapsedTime; }; Clock.prototype.getDelta = function getDelta () { var diff = 0; if ( this.autoStart && ! this.running ) { this.start(); return 0; } if ( this.running ) { var newTime = ( typeof performance === 'undefined' ? Date : performance ).now(); diff = ( newTime - this.oldTime ) / 1000; this.oldTime = newTime; this.elapsedTime += diff; } return diff; }; var _position$2 = new Vector3(); var _quaternion$3 = new Quaternion(); var _scale$1 = new Vector3(); var _orientation = new Vector3(); function AudioListener() { Object3D.call(this); this.type = 'AudioListener'; this.context = AudioContext.getContext(); this.gain = this.context.createGain(); this.gain.connect( this.context.destination ); this.filter = null; this.timeDelta = 0; // private this._clock = new Clock(); } AudioListener.prototype = Object.create( Object3D.prototype ); AudioListener.prototype.constructor = AudioListener; AudioListener.prototype.getInput = function getInput () { return this.gain; }; AudioListener.prototype.removeFilter = function removeFilter () { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); this.gain.connect( this.context.destination ); this.filter = null; } return this; }; AudioListener.prototype.getFilter = function getFilter () { return this.filter; }; AudioListener.prototype.setFilter = function setFilter ( value ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); } else { this.gain.disconnect( this.context.destination ); } this.filter = value; this.gain.connect( this.filter ); this.filter.connect( this.context.destination ); return this; }; AudioListener.prototype.getMasterVolume = function getMasterVolume () { return this.gain.gain.value; }; AudioListener.prototype.setMasterVolume = function setMasterVolume ( value ) { this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); return this; }; AudioListener.prototype.updateMatrixWorld = function updateMatrixWorld ( force ) { Object3D.prototype.updateMatrixWorld.call( this, force ); var listener = this.context.listener; var up = this.up; this.timeDelta = this._clock.getDelta(); this.matrixWorld.decompose( _position$2, _quaternion$3, _scale$1 ); _orientation.set( 0, 0, - 1 ).applyQuaternion( _quaternion$3 ); if ( listener.positionX ) { // code path for Chrome (see #14393) var endTime = this.context.currentTime + this.timeDelta; listener.positionX.linearRampToValueAtTime( _position$2.x, endTime ); listener.positionY.linearRampToValueAtTime( _position$2.y, endTime ); listener.positionZ.linearRampToValueAtTime( _position$2.z, endTime ); listener.forwardX.linearRampToValueAtTime( _orientation.x, endTime ); listener.forwardY.linearRampToValueAtTime( _orientation.y, endTime ); listener.forwardZ.linearRampToValueAtTime( _orientation.z, endTime ); listener.upX.linearRampToValueAtTime( up.x, endTime ); listener.upY.linearRampToValueAtTime( up.y, endTime ); listener.upZ.linearRampToValueAtTime( up.z, endTime ); } else { listener.setPosition( _position$2.x, _position$2.y, _position$2.z ); listener.setOrientation( _orientation.x, _orientation.y, _orientation.z, up.x, up.y, up.z ); } }; function Audio( listener ) { Object3D.call(this); this.type = 'Audio'; this.listener = listener; this.context = listener.context; this.gain = this.context.createGain(); this.gain.connect( listener.getInput() ); this.autoplay = false; this.buffer = null; this.detune = 0; this.loop = false; this.loopStart = 0; this.loopEnd = 0; this.offset = 0; this.duration = undefined; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.source = null; this.sourceType = 'empty'; this._startedAt = 0; this._progress = 0; this._connected = false; this.filters = []; } Audio.prototype = Object.create( Object3D.prototype ); Audio.prototype.constructor = Audio; Audio.prototype.getOutput = function getOutput () { return this.gain; }; Audio.prototype.setNodeSource = function setNodeSource ( audioNode ) { this.hasPlaybackControl = false; this.sourceType = 'audioNode'; this.source = audioNode; this.connect(); return this; }; Audio.prototype.setMediaElementSource = function setMediaElementSource ( mediaElement ) { this.hasPlaybackControl = false; this.sourceType = 'mediaNode'; this.source = this.context.createMediaElementSource( mediaElement ); this.connect(); return this; }; Audio.prototype.setMediaStreamSource = function setMediaStreamSource ( mediaStream ) { this.hasPlaybackControl = false; this.sourceType = 'mediaStreamNode'; this.source = this.context.createMediaStreamSource( mediaStream ); this.connect(); return this; }; Audio.prototype.setBuffer = function setBuffer ( audioBuffer ) { this.buffer = audioBuffer; this.sourceType = 'buffer'; if ( this.autoplay ) { this.play(); } return this; }; Audio.prototype.play = function play ( delay ) { if ( delay === undefined ) { delay = 0; } if ( this.isPlaying === true ) { console.warn( 'THREE.Audio: Audio is already playing.' ); return; } if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this._startedAt = this.context.currentTime + delay; var source = this.context.createBufferSource(); source.buffer = this.buffer; source.loop = this.loop; source.loopStart = this.loopStart; source.loopEnd = this.loopEnd; source.onended = this.onEnded.bind( this ); source.start( this._startedAt, this._progress + this.offset, this.duration ); this.isPlaying = true; this.source = source; this.setDetune( this.detune ); this.setPlaybackRate( this.playbackRate ); return this.connect(); }; Audio.prototype.pause = function pause () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } if ( this.isPlaying === true ) { // update current progress this._progress += Math.max( this.context.currentTime - this._startedAt, 0 ) * this.playbackRate; if ( this.loop === true ) { // ensure _progress does not exceed duration with looped audios this._progress = this._progress % ( this.duration || this.buffer.duration ); } this.source.stop(); this.source.onended = null; this.isPlaying = false; } return this; }; Audio.prototype.stop = function stop () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this._progress = 0; this.source.stop(); this.source.onended = null; this.isPlaying = false; return this; }; Audio.prototype.connect = function connect () { if ( this.filters.length > 0 ) { this.source.connect( this.filters[ 0 ] ); for ( var i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].connect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].connect( this.getOutput() ); } else { this.source.connect( this.getOutput() ); } this._connected = true; return this; }; Audio.prototype.disconnect = function disconnect () { if ( this.filters.length > 0 ) { this.source.disconnect( this.filters[ 0 ] ); for ( var i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].disconnect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() ); } else { this.source.disconnect( this.getOutput() ); } this._connected = false; return this; }; Audio.prototype.getFilters = function getFilters () { return this.filters; }; Audio.prototype.setFilters = function setFilters ( value ) { if ( ! value ) { value = []; } if ( this._connected === true ) { this.disconnect(); this.filters = value; this.connect(); } else { this.filters = value; } return this; }; Audio.prototype.setDetune = function setDetune ( value ) { this.detune = value; if ( this.source.detune === undefined ) { return; } // only set detune when available if ( this.isPlaying === true ) { this.source.detune.setTargetAtTime( this.detune, this.context.currentTime, 0.01 ); } return this; }; Audio.prototype.getDetune = function getDetune () { return this.detune; }; Audio.prototype.getFilter = function getFilter () { return this.getFilters()[ 0 ]; }; Audio.prototype.setFilter = function setFilter ( filter ) { return this.setFilters( filter ? [ filter ] : [] ); }; Audio.prototype.setPlaybackRate = function setPlaybackRate ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.playbackRate = value; if ( this.isPlaying === true ) { this.source.playbackRate.setTargetAtTime( this.playbackRate, this.context.currentTime, 0.01 ); } return this; }; Audio.prototype.getPlaybackRate = function getPlaybackRate () { return this.playbackRate; }; Audio.prototype.onEnded = function onEnded () { this.isPlaying = false; }; Audio.prototype.getLoop = function getLoop () { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return false; } return this.loop; }; Audio.prototype.setLoop = function setLoop ( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.loop = value; if ( this.isPlaying === true ) { this.source.loop = this.loop; } return this; }; Audio.prototype.setLoopStart = function setLoopStart ( value ) { this.loopStart = value; return this; }; Audio.prototype.setLoopEnd = function setLoopEnd ( value ) { this.loopEnd = value; return this; }; Audio.prototype.getVolume = function getVolume () { return this.gain.gain.value; }; Audio.prototype.setVolume = function setVolume ( value ) { this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); return this; }; var _position$3 = new Vector3(); var _quaternion$4 = new Quaternion(); var _scale$2 = new Vector3(); var _orientation$1 = new Vector3(); function PositionalAudio( listener ) { Audio.call( this, listener ); this.panner = this.context.createPanner(); this.panner.panningModel = 'HRTF'; this.panner.connect( this.gain ); } PositionalAudio.prototype = Object.create( Audio.prototype ); PositionalAudio.prototype.constructor = PositionalAudio; PositionalAudio.prototype.getOutput = function getOutput () { return this.panner; }; PositionalAudio.prototype.getRefDistance = function getRefDistance () { return this.panner.refDistance; }; PositionalAudio.prototype.setRefDistance = function setRefDistance ( value ) { this.panner.refDistance = value; return this; }; PositionalAudio.prototype.getRolloffFactor = function getRolloffFactor () { return this.panner.rolloffFactor; }; PositionalAudio.prototype.setRolloffFactor = function setRolloffFactor ( value ) { this.panner.rolloffFactor = value; return this; }; PositionalAudio.prototype.getDistanceModel = function getDistanceModel () { return this.panner.distanceModel; }; PositionalAudio.prototype.setDistanceModel = function setDistanceModel ( value ) { this.panner.distanceModel = value; return this; }; PositionalAudio.prototype.getMaxDistance = function getMaxDistance () { return this.panner.maxDistance; }; PositionalAudio.prototype.setMaxDistance = function setMaxDistance ( value ) { this.panner.maxDistance = value; return this; }; PositionalAudio.prototype.setDirectionalCone = function setDirectionalCone ( coneInnerAngle, coneOuterAngle, coneOuterGain ) { this.panner.coneInnerAngle = coneInnerAngle; this.panner.coneOuterAngle = coneOuterAngle; this.panner.coneOuterGain = coneOuterGain; return this; }; PositionalAudio.prototype.updateMatrixWorld = function updateMatrixWorld ( force ) { Audio.prototype.updateMatrixWorld.call( this, force ); if ( this.hasPlaybackControl === true && this.isPlaying === false ) { return; } this.matrixWorld.decompose( _position$3, _quaternion$4, _scale$2 ); _orientation$1.set( 0, 0, 1 ).applyQuaternion( _quaternion$4 ); var panner = this.panner; if ( panner.positionX ) { // code path for Chrome and Firefox (see #14393) var endTime = this.context.currentTime + this.listener.timeDelta; panner.positionX.linearRampToValueAtTime( _position$3.x, endTime ); panner.positionY.linearRampToValueAtTime( _position$3.y, endTime ); panner.positionZ.linearRampToValueAtTime( _position$3.z, endTime ); panner.orientationX.linearRampToValueAtTime( _orientation$1.x, endTime ); panner.orientationY.linearRampToValueAtTime( _orientation$1.y, endTime ); panner.orientationZ.linearRampToValueAtTime( _orientation$1.z, endTime ); } else { panner.setPosition( _position$3.x, _position$3.y, _position$3.z ); panner.setOrientation( _orientation$1.x, _orientation$1.y, _orientation$1.z ); } }; var AudioAnalyser = function AudioAnalyser( audio, fftSize ) { this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048; this.data = new Uint8Array( this.analyser.frequencyBinCount ); audio.getOutput().connect( this.analyser ); }; AudioAnalyser.prototype.getFrequencyData = function getFrequencyData () { this.analyser.getByteFrequencyData( this.data ); return this.data; }; AudioAnalyser.prototype.getAverageFrequency = function getAverageFrequency () { var value = 0; var data = this.getFrequencyData(); for ( var i = 0; i < data.length; i ++ ) { value += data[ i ]; } return value / data.length; }; function PropertyMixer( binding, typeName, valueSize ) { this.binding = binding; this.valueSize = valueSize; var mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property // // 'add' is used for additive cumulative results // // 'work' is optional and is only present for quaternion types. It is used // to store intermediate quaternion multiplication results switch ( typeName ) { case 'quaternion': mixFunction = this._slerp; mixFunctionAdditive = this._slerpAdditive; setIdentity = this._setAdditiveIdentityQuaternion; this.buffer = new Float64Array( valueSize * 6 ); this._workIndex = 5; break; case 'string': case 'bool': mixFunction = this._select; // Use the regular mix function and for additive on these types, // additive is not relevant for non-numeric types mixFunctionAdditive = this._select; setIdentity = this._setAdditiveIdentityOther; this.buffer = new Array( valueSize * 5 ); break; default: mixFunction = this._lerp; mixFunctionAdditive = this._lerpAdditive; setIdentity = this._setAdditiveIdentityNumeric; this.buffer = new Float64Array( valueSize * 5 ); } this._mixBufferRegion = mixFunction; this._mixBufferRegionAdditive = mixFunctionAdditive; this._setIdentity = setIdentity; this._origIndex = 3; this._addIndex = 4; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; this.useCount = 0; this.referenceCount = 0; } Object.assign( PropertyMixer.prototype, { // accumulate data in the 'incoming' region into 'accu' accumulate: function ( accuIndex, weight ) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place var buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride; var currentWeight = this.cumulativeWeight; if ( currentWeight === 0 ) { // accuN := incoming * weight for ( var i = 0; i !== stride; ++ i ) { buffer[ offset + i ] = buffer[ i ]; } currentWeight = weight; } else { // accuN := accuN + incoming * weight currentWeight += weight; var mix = weight / currentWeight; this._mixBufferRegion( buffer, offset, 0, mix, stride ); } this.cumulativeWeight = currentWeight; }, // accumulate data in the 'incoming' region into 'add' accumulateAdditive: function ( weight ) { var buffer = this.buffer, stride = this.valueSize, offset = stride * this._addIndex; if ( this.cumulativeWeightAdditive === 0 ) { // add = identity this._setIdentity(); } // add := add + incoming * weight this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride ); this.cumulativeWeightAdditive += weight; }, // apply the state of 'accu' to the binding when accus differ apply: function ( accuIndex ) { var stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, weightAdditive = this.cumulativeWeightAdditive, binding = this.binding; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; if ( weight < 1 ) { // accuN := accuN + original * ( 1 - cumulativeWeight ) var originalValueOffset = stride * this._origIndex; this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride ); } if ( weightAdditive > 0 ) { // accuN := accuN + additive accuN this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride ); } for ( var i = stride, e = stride + stride; i !== e; ++ i ) { if ( buffer[ i ] !== buffer[ i + stride ] ) { // value has changed -> update scene graph binding.setValue( buffer, offset ); break; } } }, // remember the state of the bound property and copy it to both accus saveOriginalState: function () { var binding = this.binding; var buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * this._origIndex; binding.getValue( buffer, originalValueOffset ); // accu[0..1] := orig -- initially detect changes against the original for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) { buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; } // Add to identity for additive this._setIdentity(); this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; }, // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState: function () { var originalValueOffset = this.valueSize * 3; this.binding.setValue( this.buffer, originalValueOffset ); }, _setAdditiveIdentityNumeric: function () { var startIndex = this._addIndex * this.valueSize; var endIndex = startIndex + this.valueSize; for ( var i = startIndex; i < endIndex; i ++ ) { this.buffer[ i ] = 0; } }, _setAdditiveIdentityQuaternion: function () { this._setAdditiveIdentityNumeric(); this.buffer[ this._addIndex * this.valueSize + 3 ] = 1; }, _setAdditiveIdentityOther: function () { var startIndex = this._origIndex * this.valueSize; var targetIndex = this._addIndex * this.valueSize; for ( var i = 0; i < this.valueSize; i ++ ) { this.buffer[ targetIndex + i ] = this.buffer[ startIndex + i ]; } }, // mix functions _select: function ( buffer, dstOffset, srcOffset, t, stride ) { if ( t >= 0.5 ) { for ( var i = 0; i !== stride; ++ i ) { buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; } } }, _slerp: function ( buffer, dstOffset, srcOffset, t ) { Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); }, _slerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) { var workOffset = this._workIndex * stride; // Store result in intermediate buffer offset Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset ); // Slerp to the intermediate result Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t ); }, _lerp: function ( buffer, dstOffset, srcOffset, t, stride ) { var s = 1 - t; for ( var i = 0; i !== stride; ++ i ) { var j = dstOffset + i; buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; } }, _lerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) { for ( var i = 0; i !== stride; ++ i ) { var j = dstOffset + i; buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t; } } } ); // Characters [].:/ are reserved for track binding syntax. var _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; var _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' ); // Attempts to allow node names from any language. ES5's `\w` regexp matches // only latin characters, and the unicode \p{L} is not yet supported. So // instead, we exclude reserved characters and match everything else. var _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; var _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must // be matched to parse the rest of the track name. var _directoryRe = /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar ); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. var _nodeRe = /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot ); // Object on target node, and accessor. May not contain reserved // characters. Accessor may contain any character except closing bracket. var _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar ); // Property and accessor. May not contain reserved characters. Accessor may // contain any non-bracket characters. var _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar ); var _trackRe = new RegExp( '' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$' ); var _supportedObjectNames = [ 'material', 'materials', 'bones' ]; function Composite( targetGroup, path, optionalParsedPath ) { var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path ); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_( path, parsedPath ); } Object.assign( Composite.prototype, { getValue: function ( array, offset ) { this.bind(); // bind all binding var firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[ firstValidIndex ]; // and only call .getValue on the first if ( binding !== undefined ) { binding.getValue( array, offset ); } }, setValue: function ( array, offset ) { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].setValue( array, offset ); } }, bind: function () { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].bind(); } }, unbind: function () { var bindings = this._bindings; for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].unbind(); } } } ); function PropertyBinding( rootNode, path, parsedPath ) { this.path = path; this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path ); this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode; this.rootNode = rootNode; } Object.assign( PropertyBinding, { Composite: Composite, create: function ( root, path, parsedPath ) { if ( ! ( root && root.isAnimationObjectGroup ) ) { return new PropertyBinding( root, path, parsedPath ); } else { return new PropertyBinding.Composite( root, path, parsedPath ); } }, /** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ sanitizeNodeName: function ( name ) { return name.replace( /\s/g, '_' ).replace( _reservedRe, '' ); }, parseTrackName: function ( trackName ) { var matches = _trackRe.exec( trackName ); if ( ! matches ) { throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName ); } var results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[ 2 ], objectName: matches[ 3 ], objectIndex: matches[ 4 ], propertyName: matches[ 5 ], // required propertyIndex: matches[ 6 ] }; var lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' ); if ( lastDot !== undefined && lastDot !== - 1 ) { var objectName = results.nodeName.substring( lastDot + 1 ); // Object names must be checked against an allowlist. Otherwise, there // is no way to parse 'foo.bar.baz': 'baz' must be a property, but // 'bar' could be the objectName, or part of a nodeName (which can // include '.' characters). if ( _supportedObjectNames.indexOf( objectName ) !== - 1 ) { results.nodeName = results.nodeName.substring( 0, lastDot ); results.objectName = objectName; } } if ( results.propertyName === null || results.propertyName.length === 0 ) { throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName ); } return results; }, findNode: function ( root, nodeName ) { if ( ! nodeName || nodeName === "" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) { return root; } // search into skeleton bones. if ( root.skeleton ) { var bone = root.skeleton.getBoneByName( nodeName ); if ( bone !== undefined ) { return bone; } } // search into node subtree. if ( root.children ) { var searchNodeSubtree = function ( children ) { for ( var i = 0; i < children.length; i ++ ) { var childNode = children[ i ]; if ( childNode.name === nodeName || childNode.uuid === nodeName ) { return childNode; } var result = searchNodeSubtree( childNode.children ); if ( result ) { return result; } } return null; }; var subTreeNode = searchNodeSubtree( root.children ); if ( subTreeNode ) { return subTreeNode; } } return null; } } ); Object.assign( PropertyBinding.prototype, { // prototype, continued // these are used to "bind" a nonexistent property _getValue_unavailable: function () {}, _setValue_unavailable: function () {}, BindingType: { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }, Versioning: { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }, GetterByBindingType: [ function getValue_direct( buffer, offset ) { buffer[ offset ] = this.node[ this.propertyName ]; }, function getValue_array( buffer, offset ) { var source = this.resolvedProperty; for ( var i = 0, n = source.length; i !== n; ++ i ) { buffer[ offset ++ ] = source[ i ]; } }, function getValue_arrayElement( buffer, offset ) { buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; }, function getValue_toArray( buffer, offset ) { this.resolvedProperty.toArray( buffer, offset ); } ], SetterByBindingTypeAndVersioning: [ [ // Direct function setValue_direct( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; }, function setValue_direct_setNeedsUpdate( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // EntireArray function setValue_array( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } }, function setValue_array_setNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.needsUpdate = true; }, function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { var dest = this.resolvedProperty; for ( var i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // ArrayElement function setValue_arrayElement( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; }, function setValue_arrayElement_setNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.needsUpdate = true; }, function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } ], [ // HasToFromArray function setValue_fromArray( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); }, function setValue_fromArray_setNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.needsUpdate = true; }, function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.matrixWorldNeedsUpdate = true; } ] ], getValue: function getValue_unbound( targetArray, offset ) { this.bind(); this.getValue( targetArray, offset ); // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. }, setValue: function getValue_unbound( sourceArray, offset ) { this.bind(); this.setValue( sourceArray, offset ); }, // create getter / setter pair for a property in the scene graph bind: function () { var targetObject = this.node; var parsedPath = this.parsedPath; var objectName = parsedPath.objectName; var propertyName = parsedPath.propertyName; var propertyIndex = parsedPath.propertyIndex; if ( ! targetObject ) { targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode; this.node = targetObject; } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; // ensure there is a value node if ( ! targetObject ) { console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' ); return; } if ( objectName ) { var objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch ( objectName ) { case 'materials': if ( ! targetObject.material ) { console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); return; } if ( ! targetObject.material.materials ) { console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ); return; } targetObject = targetObject.material.materials; break; case 'bones': if ( ! targetObject.skeleton ) { console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ); return; } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. for ( var i = 0; i < targetObject.length; i ++ ) { if ( targetObject[ i ].name === objectIndex ) { objectIndex = i; break; } } break; default: if ( targetObject[ objectName ] === undefined ) { console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ); return; } targetObject = targetObject[ objectName ]; } if ( objectIndex !== undefined ) { if ( targetObject[ objectIndex ] === undefined ) { console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ); return; } targetObject = targetObject[ objectIndex ]; } } // resolve property var nodeProperty = targetObject[ propertyName ]; if ( nodeProperty === undefined ) { var nodeName = parsedPath.nodeName; console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject ); return; } // determine versioning scheme var versioning = this.Versioning.None; this.targetObject = targetObject; if ( targetObject.needsUpdate !== undefined ) { // material versioning = this.Versioning.NeedsUpdate; } else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate; } // determine how the property gets bound var bindingType = this.BindingType.Direct; if ( propertyIndex !== undefined ) { // access a sub element of the property array (only primitives are supported right now) if ( propertyName === "morphTargetInfluences" ) { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if ( ! targetObject.geometry ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ); return; } if ( targetObject.geometry.isBufferGeometry ) { if ( ! targetObject.geometry.morphAttributes ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ); return; } if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) { propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ]; } } else { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this ); return; } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if ( Array.isArray( nodeProperty ) ) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } // select getter / setter this.getValue = this.GetterByBindingType[ bindingType ]; this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; }, unbind: function () { this.node = null; // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } } ); // DECLARE ALIAS AFTER assign prototype Object.assign( PropertyBinding.prototype, { // initial state of these methods that calls 'bind' _getValue_unbound: PropertyBinding.prototype.getValue, _setValue_unbound: PropertyBinding.prototype.setValue, } ); /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. */ function AnimationObjectGroup() { this.uuid = MathUtils.generateUUID(); // cached objects followed by the active ones this._objects = Array.prototype.slice.call( arguments ); this.nCachedObjects_ = 0; // threshold // note: read by PropertyBinding.Composite var indices = {}; this._indicesByUUID = indices; // for bookkeeping for ( var i = 0, n = arguments.length; i !== n; ++ i ) { indices[ arguments[ i ].uuid ] = i; } this._paths = []; // inside: string this._parsedPaths = []; // inside: { we don't care, here } this._bindings = []; // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {}; // inside: indices in these arrays var scope = this; this.stats = { objects: { get total() { return scope._objects.length; }, get inUse() { return this.total - scope.nCachedObjects_; } }, get bindingsPerObject() { return scope._bindings.length; } }; } Object.assign( AnimationObjectGroup.prototype, { isAnimationObjectGroup: true, add: function () { var objects = this._objects, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length; var knownObject = undefined, nObjects = objects.length, nCachedObjects = this.nCachedObjects_; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid; var index = indicesByUUID[ uuid ]; if ( index === undefined ) { // unknown object -> add it to the ACTIVE region index = nObjects ++; indicesByUUID[ uuid ] = index; objects.push( object ); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) ); } } else if ( index < nCachedObjects ) { knownObject = objects[ index ]; // move existing object to the ACTIVE region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ]; indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; indicesByUUID[ uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = object; // accounting is done, now do the same for all bindings for ( var j$1 = 0, m$1 = nBindings; j$1 !== m$1; ++ j$1 ) { var bindingsForPath = bindings[ j$1 ], lastCached = bindingsForPath[ firstActiveIndex ]; var binding = bindingsForPath[ index ]; bindingsForPath[ index ] = lastCached; if ( binding === undefined ) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new PropertyBinding( object, paths[ j$1 ], parsedPaths[ j$1 ] ); } bindingsForPath[ firstActiveIndex ] = binding; } } else if ( objects[ index ] !== knownObject ) { console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.' ); } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects; }, remove: function () { var objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; var nCachedObjects = this.nCachedObjects_; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined && index >= nCachedObjects ) { // move existing object into the CACHED region var lastCachedIndex = nCachedObjects ++, firstActiveObject = objects[ lastCachedIndex ]; indicesByUUID[ firstActiveObject.uuid ] = index; objects[ index ] = firstActiveObject; indicesByUUID[ uuid ] = lastCachedIndex; objects[ lastCachedIndex ] = object; // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], firstActive = bindingsForPath[ lastCachedIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = firstActive; bindingsForPath[ lastCachedIndex ] = binding; } } } // for arguments this.nCachedObjects_ = nCachedObjects; }, // remove & forget uncache: function () { var objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; var nCachedObjects = this.nCachedObjects_, nObjects = objects.length; for ( var i = 0, n = arguments.length; i !== n; ++ i ) { var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined ) { delete indicesByUUID[ uuid ]; if ( index < nCachedObjects ) { // object is cached, shrink the CACHED region var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ], lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; // last cached object takes this object's place indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; // last object goes to the activated slot and pop indicesByUUID[ lastObject.uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( var j = 0, m = nBindings; j !== m; ++ j ) { var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], last = bindingsForPath[ lastIndex ]; bindingsForPath[ index ] = lastCached; bindingsForPath[ firstActiveIndex ] = last; bindingsForPath.pop(); } } else { // object is active, just swap with the last and pop var lastIndex$1 = -- nObjects, lastObject$1 = objects[ lastIndex$1 ]; indicesByUUID[ lastObject$1.uuid ] = index; objects[ index ] = lastObject$1; objects.pop(); // accounting is done, now do the same for all bindings for ( var j$1 = 0, m$1 = nBindings; j$1 !== m$1; ++ j$1 ) { var bindingsForPath$1 = bindings[ j$1 ]; bindingsForPath$1[ index ] = bindingsForPath$1[ lastIndex$1 ]; bindingsForPath$1.pop(); } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects; }, // Internal interface used by befriended PropertyBinding.Composite: subscribe_: function ( path, parsedPath ) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group var indicesByPath = this._bindingsIndicesByPath; var index = indicesByPath[ path ]; var bindings = this._bindings; if ( index !== undefined ) { return bindings[ index ]; } var paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array( nObjects ); index = bindings.length; indicesByPath[ path ] = index; paths.push( path ); parsedPaths.push( parsedPath ); bindings.push( bindingsForPath ); for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) { var object = objects[ i ]; bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath ); } return bindingsForPath; }, unsubscribe_: function ( path ) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ]; if ( index !== undefined ) { var paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[ lastBindingsIndex ], lastBindingsPath = path[ lastBindingsIndex ]; indicesByPath[ lastBindingsPath ] = index; bindings[ index ] = lastBindings; bindings.pop(); parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; parsedPaths.pop(); paths[ index ] = paths[ lastBindingsIndex ]; paths.pop(); } } } ); var AnimationAction = function AnimationAction( mixer, clip, localRoot, blendMode ) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot || null; this.blendMode = blendMode || clip.blendMode; var tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array( nTracks ); var interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; for ( var i = 0; i !== nTracks; ++ i ) { var interpolant = tracks[ i ].createInterpolant( null ); interpolants[ i ] = interpolant; interpolant.settings = interpolantSettings; } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array( nTracks ); this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = LoopRepeat; this._loopCount = - 1; // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null; // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; // no. of repetitions when looping this.paused = false; // true -> zero effective time scale this.enabled = true; // false -> zero effective weight this.clampWhenFinished = false;// keep feeding the last frame? this.zeroSlopeAtStart = true;// for smooth interpolation w/o separate this.zeroSlopeAtEnd = true;// clips for start, loop and end }; // State & Scheduling AnimationAction.prototype.play = function play () { this._mixer._activateAction( this ); return this; }; AnimationAction.prototype.stop = function stop () { this._mixer._deactivateAction( this ); return this.reset(); }; AnimationAction.prototype.reset = function reset () { this.paused = false; this.enabled = true; this.time = 0; // restart clip this._loopCount = - 1;// forget previous loops this._startTime = null;// forget scheduling return this.stopFading().stopWarping(); }; AnimationAction.prototype.isRunning = function isRunning () { return this.enabled && ! this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction( this ); }; // return true when play has been called AnimationAction.prototype.isScheduled = function isScheduled () { return this._mixer._isActiveAction( this ); }; AnimationAction.prototype.startAt = function startAt ( time ) { this._startTime = time; return this; }; AnimationAction.prototype.setLoop = function setLoop ( mode, repetitions ) { this.loop = mode; this.repetitions = repetitions; return this; }; // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing AnimationAction.prototype.setEffectiveWeight = function setEffectiveWeight ( weight ) { this.weight = weight; // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); }; // return the weight considering fading and .enabled AnimationAction.prototype.getEffectiveWeight = function getEffectiveWeight () { return this._effectiveWeight; }; AnimationAction.prototype.fadeIn = function fadeIn ( duration ) { return this._scheduleFading( duration, 0, 1 ); }; AnimationAction.prototype.fadeOut = function fadeOut ( duration ) { return this._scheduleFading( duration, 1, 0 ); }; AnimationAction.prototype.crossFadeFrom = function crossFadeFrom ( fadeOutAction, duration, warp ) { fadeOutAction.fadeOut( duration ); this.fadeIn( duration ); if ( warp ) { var fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp( 1.0, startEndRatio, duration ); this.warp( endStartRatio, 1.0, duration ); } return this; }; AnimationAction.prototype.crossFadeTo = function crossFadeTo ( fadeInAction, duration, warp ) { return fadeInAction.crossFadeFrom( this, duration, warp ); }; AnimationAction.prototype.stopFading = function stopFading () { var weightInterpolant = this._weightInterpolant; if ( weightInterpolant !== null ) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant( weightInterpolant ); } return this; }; // Time Scale Control // set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing AnimationAction.prototype.setEffectiveTimeScale = function setEffectiveTimeScale ( timeScale ) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 : timeScale; return this.stopWarping(); }; // return the time scale considering warping and .paused AnimationAction.prototype.getEffectiveTimeScale = function getEffectiveTimeScale () { return this._effectiveTimeScale; }; AnimationAction.prototype.setDuration = function setDuration ( duration ) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); }; AnimationAction.prototype.syncWith = function syncWith ( action ) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); }; AnimationAction.prototype.halt = function halt ( duration ) { return this.warp( this._effectiveTimeScale, 0, duration ); }; AnimationAction.prototype.warp = function warp ( startTimeScale, endTimeScale, duration ) { var mixer = this._mixer, now = mixer.time, timeScale = this.timeScale; var interpolant = this._timeScaleInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._timeScaleInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; times[ 1 ] = now + duration; values[ 0 ] = startTimeScale / timeScale; values[ 1 ] = endTimeScale / timeScale; return this; }; AnimationAction.prototype.stopWarping = function stopWarping () { var timeScaleInterpolant = this._timeScaleInterpolant; if ( timeScaleInterpolant !== null ) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); } return this; }; // Object Accessors AnimationAction.prototype.getMixer = function getMixer () { return this._mixer; }; AnimationAction.prototype.getClip = function getClip () { return this._clip; }; AnimationAction.prototype.getRoot = function getRoot () { return this._localRoot || this._mixer._root; }; // Interna AnimationAction.prototype._update = function _update ( time, deltaTime, timeDirection, accuIndex ) { // called by the mixer if ( ! this.enabled ) { // call ._updateWeight() to update ._effectiveWeight this._updateWeight( time ); return; } var startTime = this._startTime; if ( startTime !== null ) { // check for scheduled start of action var timeRunning = ( time - startTime ) * timeDirection; if ( timeRunning < 0 || timeDirection === 0 ) { return; // yet to come / don't decide when delta = 0 } // start this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning; } // apply time scale and advance time deltaTime *= this._updateTimeScale( time ); var clipTime = this._updateTime( deltaTime ); // note: _updateTime may disable the action resulting in // an effective weight of 0 var weight = this._updateWeight( time ); if ( weight > 0 ) { var interpolants = this._interpolants; var propertyMixers = this._propertyBindings; switch ( this.blendMode ) { case AdditiveAnimationBlendMode: for ( var j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulateAdditive( weight ); } break; case NormalAnimationBlendMode: default: for ( var j$1 = 0, m$1 = interpolants.length; j$1 !== m$1; ++ j$1 ) { interpolants[ j$1 ].evaluate( clipTime ); propertyMixers[ j$1 ].accumulate( accuIndex, weight ); } } } }; AnimationAction.prototype._updateWeight = function _updateWeight ( time ) { var weight = 0; if ( this.enabled ) { weight = this.weight; var interpolant = this._weightInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; weight *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopFading(); if ( interpolantValue === 0 ) { // faded out, disable this.enabled = false; } } } } this._effectiveWeight = weight; return weight; }; AnimationAction.prototype._updateTimeScale = function _updateTimeScale ( time ) { var timeScale = 0; if ( ! this.paused ) { timeScale = this.timeScale; var interpolant = this._timeScaleInterpolant; if ( interpolant !== null ) { var interpolantValue = interpolant.evaluate( time )[ 0 ]; timeScale *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopWarping(); if ( timeScale === 0 ) { // motion has halted, pause this.paused = true; } else { // warp done - apply final time scale this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; }; AnimationAction.prototype._updateTime = function _updateTime ( deltaTime ) { var duration = this._clip.duration; var loop = this.loop; var time = this.time + deltaTime; var loopCount = this._loopCount; var pingPong = ( loop === LoopPingPong ); if ( deltaTime === 0 ) { if ( loopCount === - 1 ) { return time; } return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time; } if ( loop === LoopOnce ) { if ( loopCount === - 1 ) { // just started this._loopCount = 0; this._setEndings( true, true, false ); } handle_stop: { if ( time >= duration ) { time = duration; } else if ( time < 0 ) { time = 0; } else { this.time = time; break handle_stop; } if ( this.clampWhenFinished ) { this.paused = true; } else { this.enabled = false; } this.time = time; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime < 0 ? - 1 : 1 } ); } } else { // repetitive Repeat or PingPong if ( loopCount === - 1 ) { // just started if ( deltaTime >= 0 ) { loopCount = 0; this._setEndings( true, this.repetitions === 0, pingPong ); } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings( this.repetitions === 0, true, pingPong ); } } if ( time >= duration || time < 0 ) { // wrap around var loopDelta = Math.floor( time / duration ); // signed time -= duration * loopDelta; loopCount += Math.abs( loopDelta ); var pending = this.repetitions - loopCount; if ( pending <= 0 ) { // have to stop (switch state, clamp time, fire event) if ( this.clampWhenFinished ) { this.paused = true; } else { this.enabled = false; } time = deltaTime > 0 ? duration : 0; this.time = time; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime > 0 ? 1 : - 1 } ); } else { // keep running if ( pending === 1 ) { // entering the last round var atStart = deltaTime < 0; this._setEndings( atStart, ! atStart, pingPong ); } else { this._setEndings( false, false, pingPong ); } this._loopCount = loopCount; this.time = time; this._mixer.dispatchEvent( { type: 'loop', action: this, loopDelta: loopDelta } ); } } else { this.time = time; } if ( pingPong && ( loopCount & 1 ) === 1 ) { // invert time for the "pong round" return duration - time; } } return time; }; AnimationAction.prototype._setEndings = function _setEndings ( atStart, atEnd, pingPong ) { var settings = this._interpolantSettings; if ( pingPong ) { settings.endingStart = ZeroSlopeEnding; settings.endingEnd = ZeroSlopeEnding; } else { // assuming for LoopOnce atStart == atEnd == true if ( atStart ) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingStart = WrapAroundEnding; } if ( atEnd ) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingEnd = WrapAroundEnding; } } }; AnimationAction.prototype._scheduleFading = function _scheduleFading ( duration, weightNow, weightThen ) { var mixer = this._mixer, now = mixer.time; var interpolant = this._weightInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._weightInterpolant = interpolant; } var times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; values[ 0 ] = weightNow; times[ 1 ] = now + duration; values[ 1 ] = weightThen; return this; }; function AnimationMixer( root ) { this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1.0; } AnimationMixer.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { constructor: AnimationMixer, _bindAction: function ( action, prototypeAction ) { var root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName; var bindingsByName = bindingsByRoot[ rootUuid ]; if ( bindingsByName === undefined ) { bindingsByName = {}; bindingsByRoot[ rootUuid ] = bindingsByName; } for ( var i = 0; i !== nTracks; ++ i ) { var track = tracks[ i ], trackName = track.name; var binding = bindingsByName[ trackName ]; if ( binding !== undefined ) { bindings[ i ] = binding; } else { binding = bindings[ i ]; if ( binding !== undefined ) { // existing binding, make sure the cache knows if ( binding._cacheIndex === null ) { ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); } continue; } var path = prototypeAction && prototypeAction. _propertyBindings[ i ].binding.parsedPath; binding = new PropertyMixer( PropertyBinding.create( root, trackName, path ), track.ValueTypeName, track.getValueSize() ); ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); bindings[ i ] = binding; } interpolants[ i ].resultBuffer = binding.buffer; } }, _activateAction: function ( action ) { if ( ! this._isActiveAction( action ) ) { if ( action._cacheIndex === null ) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind var rootUuid = ( action._localRoot || this._root ).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[ clipUuid ]; this._bindAction( action, actionsForClip && actionsForClip.knownActions[ 0 ] ); this._addInactiveAction( action, clipUuid, rootUuid ); } var bindings = action._propertyBindings; // increment reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( binding.useCount ++ === 0 ) { this._lendBinding( binding ); binding.saveOriginalState(); } } this._lendAction( action ); } }, _deactivateAction: function ( action ) { if ( this._isActiveAction( action ) ) { var bindings = action._propertyBindings; // decrement reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.useCount === 0 ) { binding.restoreOriginalState(); this._takeBackBinding( binding ); } } this._takeBackAction( action ); } }, // Memory manager _initMemoryManager: function () { this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0; this._actionsByClip = {}; // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // } this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0; this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0; var scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; }, // Memory management for AnimationAction objects _isActiveAction: function ( action ) { var index = action._cacheIndex; return index !== null && index < this._nActiveActions; }, _addInactiveAction: function ( action, clipUuid, rootUuid ) { var actions = this._actions, actionsByClip = this._actionsByClip; var actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip === undefined ) { actionsForClip = { knownActions: [ action ], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[ clipUuid ] = actionsForClip; } else { var knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push( action ); } action._cacheIndex = actions.length; actions.push( action ); actionsForClip.actionByRoot[ rootUuid ] = action; }, _removeInactiveAction: function ( action ) { var actions = this._actions, lastInactiveAction = actions[ actions.length - 1 ], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); action._cacheIndex = null; var clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[ knownActionsForClip.length - 1 ], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; var actionByRoot = actionsForClip.actionByRoot, rootUuid = ( action._localRoot || this._root ).uuid; delete actionByRoot[ rootUuid ]; if ( knownActionsForClip.length === 0 ) { delete actionsByClip[ clipUuid ]; } this._removeInactiveBindingsForAction( action ); }, _removeInactiveBindingsForAction: function ( action ) { var bindings = action._propertyBindings; for ( var i = 0, n = bindings.length; i !== n; ++ i ) { var binding = bindings[ i ]; if ( -- binding.referenceCount === 0 ) { this._removeInactiveBinding( binding ); } } }, _lendAction: function ( action ) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s var actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions ++, firstInactiveAction = actions[ lastActiveIndex ]; action._cacheIndex = lastActiveIndex; actions[ lastActiveIndex ] = action; firstInactiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = firstInactiveAction; }, _takeBackAction: function ( action ) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a var actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = -- this._nActiveActions, lastActiveAction = actions[ firstInactiveIndex ]; action._cacheIndex = firstInactiveIndex; actions[ firstInactiveIndex ] = action; lastActiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = lastActiveAction; }, // Memory management for PropertyMixer objects _addInactiveBinding: function ( binding, rootUuid, trackName ) { var bindingsByRoot = this._bindingsByRootAndName, bindings = this._bindings; var bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName === undefined ) { bindingByName = {}; bindingsByRoot[ rootUuid ] = bindingByName; } bindingByName[ trackName ] = binding; binding._cacheIndex = bindings.length; bindings.push( binding ); }, _removeInactiveBinding: function ( binding ) { var bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], lastInactiveBinding = bindings[ bindings.length - 1 ], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[ cacheIndex ] = lastInactiveBinding; bindings.pop(); delete bindingByName[ trackName ]; if ( Object.keys( bindingByName ).length === 0 ) { delete bindingsByRoot[ rootUuid ]; } }, _lendBinding: function ( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings ++, firstInactiveBinding = bindings[ lastActiveIndex ]; binding._cacheIndex = lastActiveIndex; bindings[ lastActiveIndex ] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = firstInactiveBinding; }, _takeBackBinding: function ( binding ) { var bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = -- this._nActiveBindings, lastActiveBinding = bindings[ firstInactiveIndex ]; binding._cacheIndex = firstInactiveIndex; bindings[ firstInactiveIndex ] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = lastActiveBinding; }, // Memory management of Interpolants for weight and time scale _lendControlInterpolant: function () { var interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants ++; var interpolant = interpolants[ lastActiveIndex ]; if ( interpolant === undefined ) { interpolant = new LinearInterpolant( new Float32Array( 2 ), new Float32Array( 2 ), 1, this._controlInterpolantsResultBuffer ); interpolant.__cacheIndex = lastActiveIndex; interpolants[ lastActiveIndex ] = interpolant; } return interpolant; }, _takeBackControlInterpolant: function ( interpolant ) { var interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = -- this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[ firstInactiveIndex ]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[ firstInactiveIndex ] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[ prevIndex ] = lastActiveInterpolant; }, _controlInterpolantsResultBuffer: new Float32Array( 1 ), // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction: function ( clip, optionalRoot, blendMode ) { var root = optionalRoot || this._root, rootUuid = root.uuid; var clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip; var clipUuid = clipObject !== null ? clipObject.uuid : clip; var actionsForClip = this._actionsByClip[ clipUuid ]; var prototypeAction = null; if ( blendMode === undefined ) { if ( clipObject !== null ) { blendMode = clipObject.blendMode; } else { blendMode = NormalAnimationBlendMode; } } if ( actionsForClip !== undefined ) { var existingAction = actionsForClip.actionByRoot[ rootUuid ]; if ( existingAction !== undefined && existingAction.blendMode === blendMode ) { return existingAction; } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[ 0 ]; // also, take the clip from the prototype action if ( clipObject === null ) { clipObject = prototypeAction._clip; } } // clip must be known when specified via string if ( clipObject === null ) { return null; } // allocate all resources required to run it var newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode ); this._bindAction( newAction, prototypeAction ); // and make the action known to the memory manager this._addInactiveAction( newAction, clipUuid, rootUuid ); return newAction; }, // get an existing action existingAction: function ( clip, optionalRoot ) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { return actionsForClip.actionByRoot[ rootUuid ] || null; } return null; }, // deactivates all previously scheduled actions stopAllAction: function () { var actions = this._actions, nActions = this._nActiveActions; for ( var i = nActions - 1; i >= 0; -- i ) { actions[ i ].stop(); } return this; }, // advance the time and update apply the animation update: function ( deltaTime ) { deltaTime *= this.timeScale; var actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign( deltaTime ), accuIndex = this._accuIndex ^= 1; // run active actions for ( var i = 0; i !== nActions; ++ i ) { var action = actions[ i ]; action._update( time, deltaTime, timeDirection, accuIndex ); } // update scene graph var bindings = this._bindings, nBindings = this._nActiveBindings; for ( var i$1 = 0; i$1 !== nBindings; ++ i$1 ) { bindings[ i$1 ].apply( accuIndex ); } return this; }, // Allows you to seek to a specific time in an animation. setTime: function ( timeInSeconds ) { this.time = 0; // Zero out time attribute for AnimationMixer object; for ( var i = 0; i < this._actions.length; i ++ ) { this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects. } return this.update( timeInSeconds ); // Update used to set exact time. Returns "this" AnimationMixer object. }, // return this mixer's root target object getRoot: function () { return this._root; }, // free all resources specific to a particular clip uncacheClip: function ( clip ) { var actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away var actionsToRemove = actionsForClip.knownActions; for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) { var action = actionsToRemove[ i ]; this._deactivateAction( action ); var cacheIndex = action._cacheIndex, lastInactiveAction = actions[ actions.length - 1 ]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction( action ); } delete actionsByClip[ clipUuid ]; } }, // free all resources specific to a particular root target object uncacheRoot: function ( root ) { var rootUuid = root.uuid, actionsByClip = this._actionsByClip; for ( var clipUuid in actionsByClip ) { var actionByRoot = actionsByClip[ clipUuid ].actionByRoot, action = actionByRoot[ rootUuid ]; if ( action !== undefined ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName !== undefined ) { for ( var trackName in bindingByName ) { var binding = bindingByName[ trackName ]; binding.restoreOriginalState(); this._removeInactiveBinding( binding ); } } }, // remove a targeted clip from the cache uncacheAction: function ( clip, optionalRoot ) { var action = this.existingAction( clip, optionalRoot ); if ( action !== null ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } } ); var Uniform = function Uniform( value ) { if ( typeof value === 'string' ) { console.warn( 'THREE.Uniform: Type parameter is no longer needed.' ); value = arguments[ 1 ]; } this.value = value; }; Uniform.prototype.clone = function clone () { return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() ); }; function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) { InterleavedBuffer.call( this, array, stride ); this.meshPerAttribute = meshPerAttribute || 1; } InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), { constructor: InstancedInterleavedBuffer, isInstancedInterleavedBuffer: true, copy: function ( source ) { InterleavedBuffer.prototype.copy.call( this, source ); this.meshPerAttribute = source.meshPerAttribute; return this; }, clone: function ( data ) { var ib = InterleavedBuffer.prototype.clone.call( this, data ); ib.meshPerAttribute = this.meshPerAttribute; return ib; }, toJSON: function ( data ) { var json = InterleavedBuffer.prototype.toJSON.call( this, data ); json.isInstancedInterleavedBuffer = true; json.meshPerAttribute = this.meshPerAttribute; return json; } } ); /** * @author raub / https://github.com/raub */ /** * Element size is one of: * 5126: 4 * 5123: 2 * 5122: 2 * 5125: 4 * 5124: 4 * 5120: 1 * 5121: 1 */ function GLBufferAttribute( buffer, type, itemSize, elementSize, count ) { this.buffer = buffer; this.type = type; this.itemSize = itemSize; this.elementSize = elementSize; this.count = count; this.version = 0; } Object.defineProperty( GLBufferAttribute.prototype, 'needsUpdate', { set: function ( value ) { if ( value === true ) { this.version ++; } } } ); Object.assign( GLBufferAttribute.prototype, { isGLBufferAttribute: true, setBuffer: function ( buffer ) { this.buffer = buffer; return this; }, setType: function ( type, elementSize ) { this.type = type; this.elementSize = elementSize; return this; }, setItemSize: function ( itemSize ) { this.itemSize = itemSize; return this; }, setCount: function ( count ) { this.count = count; return this; }, } ); function Raycaster( origin, direction, near, far ) { this.ray = new Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near || 0; this.far = far || Infinity; this.camera = null; this.layers = new Layers(); this.params = { Mesh: {}, Line: { threshold: 1 }, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; Object.defineProperties( this.params, { PointCloud: { get: function () { console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' ); return this.Points; } } } ); } function ascSort( a, b ) { return a.distance - b.distance; } function intersectObject( object, raycaster, intersects, recursive ) { if ( object.layers.test( raycaster.layers ) ) { object.raycast( raycaster, intersects ); } if ( recursive === true ) { var children = object.children; for ( var i = 0, l = children.length; i < l; i ++ ) { intersectObject( children[ i ], raycaster, intersects, true ); } } } Object.assign( Raycaster.prototype, { set: function ( origin, direction ) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set( origin, direction ); }, setFromCamera: function ( coords, camera ) { if ( ( camera && camera.isPerspectiveCamera ) ) { this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); this.camera = camera; } else if ( ( camera && camera.isOrthographicCamera ) ) { this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ); this.camera = camera; } else { console.error( 'THREE.Raycaster: Unsupported camera type.' ); } }, intersectObject: function ( object, recursive, optionalTarget ) { var intersects = optionalTarget || []; intersectObject( object, this, intersects, recursive ); intersects.sort( ascSort ); return intersects; }, intersectObjects: function ( objects, recursive, optionalTarget ) { var intersects = optionalTarget || []; if ( Array.isArray( objects ) === false ) { console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' ); return intersects; } for ( var i = 0, l = objects.length; i < l; i ++ ) { intersectObject( objects[ i ], this, intersects, recursive ); } intersects.sort( ascSort ); return intersects; } } ); /** * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. * The azimuthal angle (theta) is measured from the positive z-axis. */ var Spherical = function Spherical( radius, phi, theta ) { if ( radius === void 0 ) radius = 1; if ( phi === void 0 ) phi = 0; if ( theta === void 0 ) theta = 0; this.radius = radius; this.phi = phi; // polar angle this.theta = theta; // azimuthal angle return this; }; Spherical.prototype.set = function set ( radius, phi, theta ) { this.radius = radius; this.phi = phi; this.theta = theta; return this; }; Spherical.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Spherical.prototype.copy = function copy ( other ) { this.radius = other.radius; this.phi = other.phi; this.theta = other.theta; return this; }; // restrict phi to be betwee EPS and PI-EPS Spherical.prototype.makeSafe = function makeSafe () { var EPS = 0.000001; this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) ); return this; }; Spherical.prototype.setFromVector3 = function setFromVector3 ( v ) { return this.setFromCartesianCoords( v.x, v.y, v.z ); }; Spherical.prototype.setFromCartesianCoords = function setFromCartesianCoords ( x, y, z ) { this.radius = Math.sqrt( x * x + y * y + z * z ); if ( this.radius === 0 ) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2( x, z ); this.phi = Math.acos( MathUtils.clamp( y / this.radius, - 1, 1 ) ); } return this; }; /** * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system */ var Cylindrical = function Cylindrical( radius, theta, y ) { this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane return this; }; Cylindrical.prototype.set = function set ( radius, theta, y ) { this.radius = radius; this.theta = theta; this.y = y; return this; }; Cylindrical.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Cylindrical.prototype.copy = function copy ( other ) { this.radius = other.radius; this.theta = other.theta; this.y = other.y; return this; }; Cylindrical.prototype.setFromVector3 = function setFromVector3 ( v ) { return this.setFromCartesianCoords( v.x, v.y, v.z ); }; Cylindrical.prototype.setFromCartesianCoords = function setFromCartesianCoords ( x, y, z ) { this.radius = Math.sqrt( x * x + z * z ); this.theta = Math.atan2( x, z ); this.y = y; return this; }; var _vector$7 = new Vector2(); var Box2 = function Box2( min, max ) { Object.defineProperty( this, 'isBox2', { value: true } ); this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity ); }; Box2.prototype.set = function set ( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; }; Box2.prototype.setFromPoints = function setFromPoints ( points ) { this.makeEmpty(); for ( var i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; }; Box2.prototype.setFromCenterAndSize = function setFromCenterAndSize ( center, size ) { var halfSize = _vector$7.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; }; Box2.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Box2.prototype.copy = function copy ( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; }; Box2.prototype.makeEmpty = function makeEmpty () { this.min.x = this.min.y = + Infinity; this.max.x = this.max.y = - Infinity; return this; }; Box2.prototype.isEmpty = function isEmpty () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); }; Box2.prototype.getCenter = function getCenter ( target ) { if ( target === undefined ) { console.warn( 'THREE.Box2: .getCenter() target is now required' ); target = new Vector2(); } return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); }; Box2.prototype.getSize = function getSize ( target ) { if ( target === undefined ) { console.warn( 'THREE.Box2: .getSize() target is now required' ); target = new Vector2(); } return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min ); }; Box2.prototype.expandByPoint = function expandByPoint ( point ) { this.min.min( point ); this.max.max( point ); return this; }; Box2.prototype.expandByVector = function expandByVector ( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; }; Box2.prototype.expandByScalar = function expandByScalar ( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; }; Box2.prototype.containsPoint = function containsPoint ( point ) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true; }; Box2.prototype.containsBox = function containsBox ( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y; }; Box2.prototype.getParameter = function getParameter ( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. if ( target === undefined ) { console.warn( 'THREE.Box2: .getParameter() target is now required' ); target = new Vector2(); } return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ) ); }; Box2.prototype.intersectsBox = function intersectsBox ( box ) { // using 4 splitting planes to rule out intersections return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true; }; Box2.prototype.clampPoint = function clampPoint ( point, target ) { if ( target === undefined ) { console.warn( 'THREE.Box2: .clampPoint() target is now required' ); target = new Vector2(); } return target.copy( point ).clamp( this.min, this.max ); }; Box2.prototype.distanceToPoint = function distanceToPoint ( point ) { var clampedPoint = _vector$7.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length(); }; Box2.prototype.intersect = function intersect ( box ) { this.min.max( box.min ); this.max.min( box.max ); return this; }; Box2.prototype.union = function union ( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; }; Box2.prototype.translate = function translate ( offset ) { this.min.add( offset ); this.max.add( offset ); return this; }; Box2.prototype.equals = function equals ( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); }; var _startP = new Vector3(); var _startEnd = new Vector3(); var Line3 = function Line3( start, end ) { this.start = ( start !== undefined ) ? start : new Vector3(); this.end = ( end !== undefined ) ? end : new Vector3(); }; Line3.prototype.set = function set ( start, end ) { this.start.copy( start ); this.end.copy( end ); return this; }; Line3.prototype.clone = function clone () { return new this.constructor().copy( this ); }; Line3.prototype.copy = function copy ( line ) { this.start.copy( line.start ); this.end.copy( line.end ); return this; }; Line3.prototype.getCenter = function getCenter ( target ) { if ( target === undefined ) { console.warn( 'THREE.Line3: .getCenter() target is now required' ); target = new Vector3(); } return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); }; Line3.prototype.delta = function delta ( target ) { if ( target === undefined ) { console.warn( 'THREE.Line3: .delta() target is now required' ); target = new Vector3(); } return target.subVectors( this.end, this.start ); }; Line3.prototype.distanceSq = function distanceSq () { return this.start.distanceToSquared( this.end ); }; Line3.prototype.distance = function distance () { return this.start.distanceTo( this.end ); }; Line3.prototype.at = function at ( t, target ) { if ( target === undefined ) { console.warn( 'THREE.Line3: .at() target is now required' ); target = new Vector3(); } return this.delta( target ).multiplyScalar( t ).add( this.start ); }; Line3.prototype.closestPointToPointParameter = function closestPointToPointParameter ( point, clampToLine ) { _startP.subVectors( point, this.start ); _startEnd.subVectors( this.end, this.start ); var startEnd2 = _startEnd.dot( _startEnd ); var startEnd_startP = _startEnd.dot( _startP ); var t = startEnd_startP / startEnd2; if ( clampToLine ) { t = MathUtils.clamp( t, 0, 1 ); } return t; }; Line3.prototype.closestPointToPoint = function closestPointToPoint ( point, clampToLine, target ) { var t = this.closestPointToPointParameter( point, clampToLine ); if ( target === undefined ) { console.warn( 'THREE.Line3: .closestPointToPoint() target is now required' ); target = new Vector3(); } return this.delta( target ).multiplyScalar( t ).add( this.start ); }; Line3.prototype.applyMatrix4 = function applyMatrix4 ( matrix ) { this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix ); return this; }; Line3.prototype.equals = function equals ( line ) { return line.start.equals( this.start ) && line.end.equals( this.end ); }; function ImmediateRenderObject( material ) { Object3D.call( this ); this.material = material; this.render = function ( /* renderCallback */ ) {}; this.hasPositions = false; this.hasNormals = false; this.hasColors = false; this.hasUvs = false; this.positionArray = null; this.normalArray = null; this.colorArray = null; this.uvArray = null; this.count = 0; } ImmediateRenderObject.prototype = Object.create( Object3D.prototype ); ImmediateRenderObject.prototype.constructor = ImmediateRenderObject; ImmediateRenderObject.prototype.isImmediateRenderObject = true; var _vector$8 = new Vector3(); function SpotLightHelper( light, color ) { Object3D.call(this); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; var geometry = new BufferGeometry(); var positions = [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, - 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, - 1, 1 ]; for ( var i = 0, j = 1, l = 32; i < l; i ++, j ++ ) { var p1 = ( i / l ) * Math.PI * 2; var p2 = ( j / l ) * Math.PI * 2; positions.push( Math.cos( p1 ), Math.sin( p1 ), 1, Math.cos( p2 ), Math.sin( p2 ), 1 ); } geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); var material = new LineBasicMaterial( { fog: false, toneMapped: false } ); this.cone = new LineSegments( geometry, material ); this.add( this.cone ); this.update(); } SpotLightHelper.prototype = Object.create( Object3D.prototype ); SpotLightHelper.prototype.constructor = SpotLightHelper; SpotLightHelper.prototype.dispose = function dispose () { this.cone.geometry.dispose(); this.cone.material.dispose(); }; SpotLightHelper.prototype.update = function update () { this.light.updateMatrixWorld(); var coneLength = this.light.distance ? this.light.distance : 1000; var coneWidth = coneLength * Math.tan( this.light.angle ); this.cone.scale.set( coneWidth, coneWidth, coneLength ); _vector$8.setFromMatrixPosition( this.light.target.matrixWorld ); this.cone.lookAt( _vector$8 ); if ( this.color !== undefined ) { this.cone.material.color.set( this.color ); } else { this.cone.material.color.copy( this.light.color ); } }; var _vector$9 = new Vector3(); var _boneMatrix = new Matrix4(); var _matrixWorldInv = new Matrix4(); function SkeletonHelper( object ) { var bones = getBoneList( object ); var geometry = new BufferGeometry(); var vertices = []; var colors = []; var color1 = new Color( 0, 0, 1 ); var color2 = new Color( 0, 1, 0 ); for ( var i = 0; i < bones.length; i ++ ) { var bone = bones[ i ]; if ( bone.parent && bone.parent.isBone ) { vertices.push( 0, 0, 0 ); vertices.push( 0, 0, 0 ); colors.push( color1.r, color1.g, color1.b ); colors.push( color2.r, color2.g, color2.b ); } } geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); var material = new LineBasicMaterial( { vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true } ); LineSegments.call( this, geometry, material ); this.type = 'SkeletonHelper'; this.isSkeletonHelper = true; this.root = object; this.bones = bones; this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; } SkeletonHelper.prototype = Object.create( LineSegments.prototype ); SkeletonHelper.prototype.constructor = SkeletonHelper; SkeletonHelper.prototype.updateMatrixWorld = function updateMatrixWorld ( force ) { var bones = this.bones; var geometry = this.geometry; var position = geometry.getAttribute( 'position' ); _matrixWorldInv.getInverse( this.root.matrixWorld ); for ( var i = 0, j = 0; i < bones.length; i ++ ) { var bone = bones[ i ]; if ( bone.parent && bone.parent.isBone ) { _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.matrixWorld ); _vector$9.setFromMatrixPosition( _boneMatrix ); position.setXYZ( j, _vector$9.x, _vector$9.y, _vector$9.z ); _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.parent.matrixWorld ); _vector$9.setFromMatrixPosition( _boneMatrix ); position.setXYZ( j + 1, _vector$9.x, _vector$9.y, _vector$9.z ); j += 2; } } geometry.getAttribute( 'position' ).needsUpdate = true; LineSegments.prototype.updateMatrixWorld.call( this, force ); }; function getBoneList( object ) { var boneList = []; if ( object && object.isBone ) { boneList.push( object ); } for ( var i = 0; i < object.children.length; i ++ ) { boneList.push.apply( boneList, getBoneList( object.children[ i ] ) ); } return boneList; } function PointLightHelper( light, sphereSize, color ) { var geometry = new SphereBufferGeometry( sphereSize, 4, 2 ); var material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); Mesh.call( this, geometry, material ); this.light = light; this.light.updateMatrixWorld(); this.color = color; this.type = 'PointLightHelper'; this.matrix = this.light.matrixWorld; this.matrixAutoUpdate = false; this.update(); /* // TODO: delete this comment? const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 ); const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); const d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ } PointLightHelper.prototype = Object.create( Mesh.prototype ); PointLightHelper.prototype.constructor = PointLightHelper; PointLightHelper.prototype.dispose = function dispose () { this.geometry.dispose(); this.material.dispose(); }; PointLightHelper.prototype.update = function update () { if ( this.color !== undefined ) { this.material.color.set( this.color ); } else { this.material.color.copy( this.light.color ); } /* const d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ }; var _vector$a = new Vector3(); var _color1 = new Color(); var _color2 = new Color(); function HemisphereLightHelper( light, size, color ) { Object3D.call(this); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; var geometry = new OctahedronBufferGeometry( size ); geometry.rotateY( Math.PI * 0.5 ); this.material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); if ( this.color === undefined ) { this.material.vertexColors = true; } var position = geometry.getAttribute( 'position' ); var colors = new Float32Array( position.count * 3 ); geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) ); this.add( new Mesh( geometry, this.material ) ); this.update(); } HemisphereLightHelper.prototype = Object.create( Object3D.prototype ); HemisphereLightHelper.prototype.constructor = HemisphereLightHelper; HemisphereLightHelper.prototype.dispose = function dispose () { this.children[ 0 ].geometry.dispose(); this.children[ 0 ].material.dispose(); }; HemisphereLightHelper.prototype.update = function update () { var mesh = this.children[ 0 ]; if ( this.color !== undefined ) { this.material.color.set( this.color ); } else { var colors = mesh.geometry.getAttribute( 'color' ); _color1.copy( this.light.color ); _color2.copy( this.light.groundColor ); for ( var i = 0, l = colors.count; i < l; i ++ ) { var color = ( i < ( l / 2 ) ) ? _color1 : _color2; colors.setXYZ( i, color.r, color.g, color.b ); } colors.needsUpdate = true; } mesh.lookAt( _vector$a.setFromMatrixPosition( this.light.matrixWorld ).negate() ); }; function GridHelper( size, divisions, color1, color2 ) { size = size || 10; divisions = divisions || 10; color1 = new Color( color1 !== undefined ? color1 : 0x444444 ); color2 = new Color( color2 !== undefined ? color2 : 0x888888 ); var center = divisions / 2; var step = size / divisions; var halfSize = size / 2; var vertices = [], colors = []; for ( var i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) { vertices.push( - halfSize, 0, k, halfSize, 0, k ); vertices.push( k, 0, - halfSize, k, 0, halfSize ); var color = i === center ? color1 : color2; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; } var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); var material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); LineSegments.call( this, geometry, material ); this.type = 'GridHelper'; } GridHelper.prototype = Object.create( LineSegments.prototype ); GridHelper.prototype.constructor = GridHelper; function PolarGridHelper( radius, radials, circles, divisions, color1, color2 ) { radius = radius || 10; radials = radials || 16; circles = circles || 8; divisions = divisions || 64; color1 = new Color( color1 !== undefined ? color1 : 0x444444 ); color2 = new Color( color2 !== undefined ? color2 : 0x888888 ); var vertices = []; var colors = []; // create the radials for ( var i = 0; i <= radials; i ++ ) { var v = ( i / radials ) * ( Math.PI * 2 ); var x = Math.sin( v ) * radius; var z = Math.cos( v ) * radius; vertices.push( 0, 0, 0 ); vertices.push( x, 0, z ); var color = ( i & 1 ) ? color1 : color2; colors.push( color.r, color.g, color.b ); colors.push( color.r, color.g, color.b ); } // create the circles for ( var i$1 = 0; i$1 <= circles; i$1 ++ ) { var color$1 = ( i$1 & 1 ) ? color1 : color2; var r = radius - ( radius / circles * i$1 ); for ( var j = 0; j < divisions; j ++ ) { // first vertex var v$1 = ( j / divisions ) * ( Math.PI * 2 ); var x$1 = Math.sin( v$1 ) * r; var z$1 = Math.cos( v$1 ) * r; vertices.push( x$1, 0, z$1 ); colors.push( color$1.r, color$1.g, color$1.b ); // second vertex v$1 = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 ); x$1 = Math.sin( v$1 ) * r; z$1 = Math.cos( v$1 ) * r; vertices.push( x$1, 0, z$1 ); colors.push( color$1.r, color$1.g, color$1.b ); } } var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); var material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); LineSegments.call( this, geometry, material ); this.type = 'PolarGridHelper'; } PolarGridHelper.prototype = Object.create( LineSegments.prototype ); PolarGridHelper.prototype.constructor = PolarGridHelper; var _v1$5 = new Vector3(); var _v2$3 = new Vector3(); var _v3$1 = new Vector3(); function DirectionalLightHelper( light, size, color ) { Object3D.call(this); this.light = light; this.light.updateMatrixWorld(); this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; if ( size === undefined ) { size = 1; } var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( [ - size, size, 0, size, size, 0, size, - size, 0, - size, - size, 0, - size, size, 0 ], 3 ) ); var material = new LineBasicMaterial( { fog: false, toneMapped: false } ); this.lightPlane = new Line( geometry, material ); this.add( this.lightPlane ); geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) ); this.targetLine = new Line( geometry, material ); this.add( this.targetLine ); this.update(); } DirectionalLightHelper.prototype = Object.create( Object3D.prototype ); DirectionalLightHelper.prototype.constructor = DirectionalLightHelper; DirectionalLightHelper.prototype.dispose = function dispose () { this.lightPlane.geometry.dispose(); this.lightPlane.material.dispose(); this.targetLine.geometry.dispose(); this.targetLine.material.dispose(); }; DirectionalLightHelper.prototype.update = function update () { _v1$5.setFromMatrixPosition( this.light.matrixWorld ); _v2$3.setFromMatrixPosition( this.light.target.matrixWorld ); _v3$1.subVectors( _v2$3, _v1$5 ); this.lightPlane.lookAt( _v2$3 ); if ( this.color !== undefined ) { this.lightPlane.material.color.set( this.color ); this.targetLine.material.color.set( this.color ); } else { this.lightPlane.material.color.copy( this.light.color ); this.targetLine.material.color.copy( this.light.color ); } this.targetLine.lookAt( _v2$3 ); this.targetLine.scale.z = _v3$1.length(); }; var _vector$b = new Vector3(); var _camera = new Camera(); /** * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ function CameraHelper( camera ) { var geometry = new BufferGeometry(); var material = new LineBasicMaterial( { color: 0xffffff, vertexColors: true, toneMapped: false } ); var vertices = []; var colors = []; var pointMap = {}; // colors var colorFrustum = new Color( 0xffaa00 ); var colorCone = new Color( 0xff0000 ); var colorUp = new Color( 0x00aaff ); var colorTarget = new Color( 0xffffff ); var colorCross = new Color( 0x333333 ); // near addLine( 'n1', 'n2', colorFrustum ); addLine( 'n2', 'n4', colorFrustum ); addLine( 'n4', 'n3', colorFrustum ); addLine( 'n3', 'n1', colorFrustum ); // far addLine( 'f1', 'f2', colorFrustum ); addLine( 'f2', 'f4', colorFrustum ); addLine( 'f4', 'f3', colorFrustum ); addLine( 'f3', 'f1', colorFrustum ); // sides addLine( 'n1', 'f1', colorFrustum ); addLine( 'n2', 'f2', colorFrustum ); addLine( 'n3', 'f3', colorFrustum ); addLine( 'n4', 'f4', colorFrustum ); // cone addLine( 'p', 'n1', colorCone ); addLine( 'p', 'n2', colorCone ); addLine( 'p', 'n3', colorCone ); addLine( 'p', 'n4', colorCone ); // up addLine( 'u1', 'u2', colorUp ); addLine( 'u2', 'u3', colorUp ); addLine( 'u3', 'u1', colorUp ); // target addLine( 'c', 't', colorTarget ); addLine( 'p', 'c', colorCross ); // cross addLine( 'cn1', 'cn2', colorCross ); addLine( 'cn3', 'cn4', colorCross ); addLine( 'cf1', 'cf2', colorCross ); addLine( 'cf3', 'cf4', colorCross ); function addLine( a, b, color ) { addPoint( a, color ); addPoint( b, color ); } function addPoint( id, color ) { vertices.push( 0, 0, 0 ); colors.push( color.r, color.g, color.b ); if ( pointMap[ id ] === undefined ) { pointMap[ id ] = []; } pointMap[ id ].push( ( vertices.length / 3 ) - 1 ); } geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); LineSegments.call( this, geometry, material ); this.type = 'CameraHelper'; this.camera = camera; if ( this.camera.updateProjectionMatrix ) { this.camera.updateProjectionMatrix(); } this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); } CameraHelper.prototype = Object.create( LineSegments.prototype ); CameraHelper.prototype.constructor = CameraHelper; CameraHelper.prototype.update = function update () { var geometry = this.geometry; var pointMap = this.pointMap; var w = 1, h = 1; // we need just camera projection matrix inverse // world matrix must be identity _camera.projectionMatrixInverse.copy( this.camera.projectionMatrixInverse ); // center / target setPoint( 'c', pointMap, geometry, _camera, 0, 0, - 1 ); setPoint( 't', pointMap, geometry, _camera, 0, 0, 1 ); // near setPoint( 'n1', pointMap, geometry, _camera, - w, - h, - 1 ); setPoint( 'n2', pointMap, geometry, _camera, w, - h, - 1 ); setPoint( 'n3', pointMap, geometry, _camera, - w, h, - 1 ); setPoint( 'n4', pointMap, geometry, _camera, w, h, - 1 ); // far setPoint( 'f1', pointMap, geometry, _camera, - w, - h, 1 ); setPoint( 'f2', pointMap, geometry, _camera, w, - h, 1 ); setPoint( 'f3', pointMap, geometry, _camera, - w, h, 1 ); setPoint( 'f4', pointMap, geometry, _camera, w, h, 1 ); // up setPoint( 'u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, - 1 ); setPoint( 'u2', pointMap, geometry, _camera, - w * 0.7, h * 1.1, - 1 ); setPoint( 'u3', pointMap, geometry, _camera, 0, h * 2, - 1 ); // cross setPoint( 'cf1', pointMap, geometry, _camera, - w, 0, 1 ); setPoint( 'cf2', pointMap, geometry, _camera, w, 0, 1 ); setPoint( 'cf3', pointMap, geometry, _camera, 0, - h, 1 ); setPoint( 'cf4', pointMap, geometry, _camera, 0, h, 1 ); setPoint( 'cn1', pointMap, geometry, _camera, - w, 0, - 1 ); setPoint( 'cn2', pointMap, geometry, _camera, w, 0, - 1 ); setPoint( 'cn3', pointMap, geometry, _camera, 0, - h, - 1 ); setPoint( 'cn4', pointMap, geometry, _camera, 0, h, - 1 ); geometry.getAttribute( 'position' ).needsUpdate = true; }; function setPoint( point, pointMap, geometry, camera, x, y, z ) { _vector$b.set( x, y, z ).unproject( camera ); var points = pointMap[ point ]; if ( points !== undefined ) { var position = geometry.getAttribute( 'position' ); for ( var i = 0, l = points.length; i < l; i ++ ) { position.setXYZ( points[ i ], _vector$b.x, _vector$b.y, _vector$b.z ); } } } var _box$3 = new Box3(); function BoxHelper( object, color ) { if ( color === void 0 ) color = 0xffff00; var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); var positions = new Float32Array( 8 * 3 ); var geometry = new BufferGeometry(); geometry.setIndex( new BufferAttribute( indices, 1 ) ); geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) ); LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.object = object; this.type = 'BoxHelper'; this.matrixAutoUpdate = false; this.update(); } BoxHelper.prototype = Object.create( LineSegments.prototype ); BoxHelper.prototype.constructor = BoxHelper; BoxHelper.prototype.update = function update ( object ) { if ( object !== undefined ) { console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' ); } if ( this.object !== undefined ) { _box$3.setFromObject( this.object ); } if ( _box$3.isEmpty() ) { return; } var min = _box$3.min; var max = _box$3.max; /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ var position = this.geometry.attributes.position; var array = position.array; array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z; position.needsUpdate = true; this.geometry.computeBoundingSphere(); }; BoxHelper.prototype.setFromObject = function setFromObject ( object ) { this.object = object; this.update(); return this; }; BoxHelper.prototype.copy = function copy ( source ) { LineSegments.prototype.copy.call( this, source ); this.object = source.object; return this; }; function Box3Helper( box, color ) { if ( color === void 0 ) color = 0xffff00; var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); var positions = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, - 1, - 1, - 1, 1, - 1, - 1 ]; var geometry = new BufferGeometry(); geometry.setIndex( new BufferAttribute( indices, 1 ) ); geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.box = box; this.type = 'Box3Helper'; this.geometry.computeBoundingSphere(); } Box3Helper.prototype = Object.create( LineSegments.prototype ); Box3Helper.prototype.constructor = Box3Helper; Box3Helper.prototype.updateMatrixWorld = function updateMatrixWorld ( force ) { var box = this.box; if ( box.isEmpty() ) { return; } box.getCenter( this.position ); box.getSize( this.scale ); this.scale.multiplyScalar( 0.5 ); LineSegments.prototype.updateMatrixWorld.call( this, force ); }; function PlaneHelper( plane, size, hex ) { var color = ( hex !== undefined ) ? hex : 0xffff00; var positions = [ 1, - 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 ]; var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); geometry.computeBoundingSphere(); Line.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.type = 'PlaneHelper'; this.plane = plane; this.size = ( size === undefined ) ? 1 : size; var positions2 = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, - 1, 1 ]; var geometry2 = new BufferGeometry(); geometry2.setAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) ); geometry2.computeBoundingSphere(); this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false } ) ) ); } PlaneHelper.prototype = Object.create( Line.prototype ); PlaneHelper.prototype.constructor = PlaneHelper; PlaneHelper.prototype.updateMatrixWorld = function updateMatrixWorld ( force ) { var scale = - this.plane.constant; if ( Math.abs( scale ) < 1e-8 ) { scale = 1e-8; } // sign does not matter this.scale.set( 0.5 * this.size, 0.5 * this.size, scale ); this.children[ 0 ].material.side = ( scale < 0 ) ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here this.lookAt( this.plane.normal ); Line.prototype.updateMatrixWorld.call( this, force ); }; var _axis = new Vector3(); var _lineGeometry, _coneGeometry; function ArrowHelper( dir, origin, length, color, headLength, headWidth ) { Object3D.call(this); // dir is assumed to be normalized this.type = 'ArrowHelper'; if ( dir === undefined ) { dir = new Vector3( 0, 0, 1 ); } if ( origin === undefined ) { origin = new Vector3( 0, 0, 0 ); } if ( length === undefined ) { length = 1; } if ( color === undefined ) { color = 0xffff00; } if ( headLength === undefined ) { headLength = 0.2 * length; } if ( headWidth === undefined ) { headWidth = 0.2 * headLength; } if ( _lineGeometry === undefined ) { _lineGeometry = new BufferGeometry(); _lineGeometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) ); _coneGeometry = new CylinderBufferGeometry( 0, 0.5, 1, 5, 1 ); _coneGeometry.translate( 0, - 0.5, 0 ); } this.position.copy( origin ); this.line = new Line( _lineGeometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.line.matrixAutoUpdate = false; this.add( this.line ); this.cone = new Mesh( _coneGeometry, new MeshBasicMaterial( { color: color, toneMapped: false } ) ); this.cone.matrixAutoUpdate = false; this.add( this.cone ); this.setDirection( dir ); this.setLength( length, headLength, headWidth ); } ArrowHelper.prototype = Object.create( Object3D.prototype ); ArrowHelper.prototype.constructor = ArrowHelper; ArrowHelper.prototype.setDirection = function setDirection ( dir ) { // dir is assumed to be normalized if ( dir.y > 0.99999 ) { this.quaternion.set( 0, 0, 0, 1 ); } else if ( dir.y < - 0.99999 ) { this.quaternion.set( 1, 0, 0, 0 ); } else { _axis.set( dir.z, 0, - dir.x ).normalize(); var radians = Math.acos( dir.y ); this.quaternion.setFromAxisAngle( _axis, radians ); } }; ArrowHelper.prototype.setLength = function setLength ( length, headLength, headWidth ) { if ( headLength === undefined ) { headLength = 0.2 * length; } if ( headWidth === undefined ) { headWidth = 0.2 * headLength; } this.line.scale.set( 1, Math.max( 0.0001, length - headLength ), 1 ); // see #17458 this.line.updateMatrix(); this.cone.scale.set( headWidth, headLength, headWidth ); this.cone.position.y = length; this.cone.updateMatrix(); }; ArrowHelper.prototype.setColor = function setColor ( color ) { this.line.material.color.set( color ); this.cone.material.color.set( color ); }; ArrowHelper.prototype.copy = function copy ( source ) { Object3D.prototype.copy.call( this, source, false ); this.line.copy( source.line ); this.cone.copy( source.cone ); return this; }; function AxesHelper( size ) { if ( size === void 0 ) size = 1; var vertices = [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ]; var colors = [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ]; var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); var material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); LineSegments.call( this, geometry, material ); this.type = 'AxesHelper'; } AxesHelper.prototype = Object.create( LineSegments.prototype ); AxesHelper.prototype.constructor = AxesHelper; var LOD_MIN = 4; var LOD_MAX = 8; var SIZE_MAX = Math.pow( 2, LOD_MAX ); // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. var EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; var TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. var MAX_SAMPLES = 20; var ENCODINGS = {}; ENCODINGS[ LinearEncoding ] = 0; ENCODINGS[ sRGBEncoding ] = 1; ENCODINGS[ RGBEEncoding ] = 2; ENCODINGS[ RGBM7Encoding ] = 3; ENCODINGS[ RGBM16Encoding ] = 4; ENCODINGS[ RGBDEncoding ] = 5; ENCODINGS[ GammaEncoding ] = 6; var _flatCamera = new OrthographicCamera(); var ref = _createPlanes(); var _lodPlanes = ref._lodPlanes; var _sizeLods = ref._sizeLods; var _sigmas = ref._sigmas; var _oldTarget = null; // Golden Ratio var PHI = ( 1 + Math.sqrt( 5 ) ) / 2; var INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. var _axisDirections = [ new Vector3( 1, 1, 1 ), new Vector3( - 1, 1, 1 ), new Vector3( 1, 1, - 1 ), new Vector3( - 1, 1, - 1 ), new Vector3( 0, PHI, INV_PHI ), new Vector3( 0, PHI, - INV_PHI ), new Vector3( INV_PHI, 0, PHI ), new Vector3( - INV_PHI, 0, PHI ), new Vector3( PHI, INV_PHI, 0 ), new Vector3( - PHI, INV_PHI, 0 ) ]; /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. */ var PMREMGenerator = function PMREMGenerator( renderer ) { this._renderer = renderer; this._pingPongRenderTarget = null; this._blurMaterial = _getBlurShader( MAX_SAMPLES ); this._equirectShader = null; this._cubemapShader = null; this._compileMaterial( this._blurMaterial ); }; /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ PMREMGenerator.prototype.fromScene = function fromScene ( scene, sigma, near, far ) { if ( sigma === void 0 ) sigma = 0; if ( near === void 0 ) near = 0.1; if ( far === void 0 ) far = 100; _oldTarget = this._renderer.getRenderTarget(); var cubeUVRenderTarget = this._allocateTargets(); this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget ); if ( sigma > 0 ) { this._blur( cubeUVRenderTarget, 0, 0, sigma ); } this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; }; /** * Generates a PMREM from an equirectangular texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. */ PMREMGenerator.prototype.fromEquirectangular = function fromEquirectangular ( equirectangular ) { return this._fromTexture( equirectangular ); }; /** * Generates a PMREM from an cubemap texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. */ PMREMGenerator.prototype.fromCubemap = function fromCubemap ( cubemap ) { return this._fromTexture( cubemap ); }; /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ PMREMGenerator.prototype.compileCubemapShader = function compileCubemapShader () { if ( this._cubemapShader === null ) { this._cubemapShader = _getCubemapShader(); this._compileMaterial( this._cubemapShader ); } }; /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ PMREMGenerator.prototype.compileEquirectangularShader = function compileEquirectangularShader () { if ( this._equirectShader === null ) { this._equirectShader = _getEquirectShader(); this._compileMaterial( this._equirectShader ); } }; /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ PMREMGenerator.prototype.dispose = function dispose () { this._blurMaterial.dispose(); if ( this._cubemapShader !== null ) { this._cubemapShader.dispose(); } if ( this._equirectShader !== null ) { this._equirectShader.dispose(); } for ( var i = 0; i < _lodPlanes.length; i ++ ) { _lodPlanes[ i ].dispose(); } }; // private interface PMREMGenerator.prototype._cleanup = function _cleanup ( outputTarget ) { this._pingPongRenderTarget.dispose(); this._renderer.setRenderTarget( _oldTarget ); outputTarget.scissorTest = false; _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); }; PMREMGenerator.prototype._fromTexture = function _fromTexture ( texture ) { _oldTarget = this._renderer.getRenderTarget(); var cubeUVRenderTarget = this._allocateTargets( texture ); this._textureToCubeUV( texture, cubeUVRenderTarget ); this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; }; PMREMGenerator.prototype._allocateTargets = function _allocateTargets ( texture ) { // warning: null texture is valid var params = { magFilter: NearestFilter, minFilter: NearestFilter, generateMipmaps: false, type: UnsignedByteType, format: RGBEFormat, encoding: _isLDR( texture ) ? texture.encoding : RGBEEncoding, depthBuffer: false }; var cubeUVRenderTarget = _createRenderTarget( params ); cubeUVRenderTarget.depthBuffer = texture ? false : true; this._pingPongRenderTarget = _createRenderTarget( params ); return cubeUVRenderTarget; }; PMREMGenerator.prototype._compileMaterial = function _compileMaterial ( material ) { var tmpMesh = new Mesh( _lodPlanes[ 0 ], material ); this._renderer.compile( tmpMesh, _flatCamera ); }; PMREMGenerator.prototype._sceneToCubeUV = function _sceneToCubeUV ( scene, near, far, cubeUVRenderTarget ) { var fov = 90; var aspect = 1; var cubeCamera = new PerspectiveCamera( fov, aspect, near, far ); var upSign = [ 1, - 1, 1, 1, 1, 1 ]; var forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ]; var renderer = this._renderer; var outputEncoding = renderer.outputEncoding; var toneMapping = renderer.toneMapping; var clearColor = renderer.getClearColor(); var clearAlpha = renderer.getClearAlpha(); renderer.toneMapping = NoToneMapping; renderer.outputEncoding = LinearEncoding; var background = scene.background; if ( background && background.isColor ) { background.convertSRGBToLinear(); // Convert linear to RGBE var maxComponent = Math.max( background.r, background.g, background.b ); var fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 ); background = background.multiplyScalar( Math.pow( 2.0, - fExp ) ); var alpha = ( fExp + 128.0 ) / 255.0; renderer.setClearColor( background, alpha ); scene.background = null; } for ( var i = 0; i < 6; i ++ ) { var col = i % 3; if ( col == 0 ) { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( forwardSign[ i ], 0, 0 ); } else if ( col == 1 ) { cubeCamera.up.set( 0, 0, upSign[ i ] ); cubeCamera.lookAt( 0, forwardSign[ i ], 0 ); } else { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( 0, 0, forwardSign[ i ] ); } _setViewport( cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX ); renderer.setRenderTarget( cubeUVRenderTarget ); renderer.render( scene, cubeCamera ); } renderer.toneMapping = toneMapping; renderer.outputEncoding = outputEncoding; renderer.setClearColor( clearColor, clearAlpha ); }; PMREMGenerator.prototype._textureToCubeUV = function _textureToCubeUV ( texture, cubeUVRenderTarget ) { var renderer = this._renderer; if ( texture.isCubeTexture ) { if ( this._cubemapShader == null ) { this._cubemapShader = _getCubemapShader(); } } else { if ( this._equirectShader == null ) { this._equirectShader = _getEquirectShader(); } } var material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader; var mesh = new Mesh( _lodPlanes[ 0 ], material ); var uniforms = material.uniforms; uniforms[ 'envMap' ].value = texture; if ( ! texture.isCubeTexture ) { uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height ); } uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ]; uniforms[ 'outputEncoding' ].value = ENCODINGS[ cubeUVRenderTarget.texture.encoding ]; _setViewport( cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX ); renderer.setRenderTarget( cubeUVRenderTarget ); renderer.render( mesh, _flatCamera ); }; PMREMGenerator.prototype._applyPMREM = function _applyPMREM ( cubeUVRenderTarget ) { var renderer = this._renderer; var autoClear = renderer.autoClear; renderer.autoClear = false; for ( var i = 1; i < TOTAL_LODS; i ++ ) { var sigma = Math.sqrt( _sigmas[ i ] * _sigmas[ i ] - _sigmas[ i - 1 ] * _sigmas[ i - 1 ] ); var poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ]; this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); } renderer.autoClear = autoClear; }; /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ PMREMGenerator.prototype._blur = function _blur ( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { var pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur( cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis ); this._halfBlur( pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis ); }; PMREMGenerator.prototype._halfBlur = function _halfBlur ( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { var renderer = this._renderer; var blurMaterial = this._blurMaterial; if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { console.error( 'blur direction must be either latitudinal or longitudinal!' ); } // Number of standard deviations at which to cut off the discrete approximation. var STANDARD_DEVIATIONS = 3; var blurMesh = new Mesh( _lodPlanes[ lodOut ], blurMaterial ); var blurUniforms = blurMaterial.uniforms; var pixels = _sizeLods[ lodIn ] - 1; var radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); var sigmaPixels = sigmaRadians / radiansPerPixel; var samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; if ( samples > MAX_SAMPLES ) { console.warn( ("sigmaRadians, " + sigmaRadians + ", is too large and will clip, as it requested " + samples + " samples when the maximum is set to " + MAX_SAMPLES) ); } var weights = []; var sum = 0; for ( var i = 0; i < MAX_SAMPLES; ++ i ) { var x$1 = i / sigmaPixels; var weight = Math.exp( - x$1 * x$1 / 2 ); weights.push( weight ); if ( i == 0 ) { sum += weight; } else if ( i < samples ) { sum += 2 * weight; } } for ( var i$1 = 0; i$1 < weights.length; i$1 ++ ) { weights[ i$1 ] = weights[ i$1 ] / sum; } blurUniforms[ 'envMap' ].value = targetIn.texture; blurUniforms[ 'samples' ].value = samples; blurUniforms[ 'weights' ].value = weights; blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal'; if ( poleAxis ) { blurUniforms[ 'poleAxis' ].value = poleAxis; } blurUniforms[ 'dTheta' ].value = radiansPerPixel; blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn; blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ]; blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ]; var outputSize = _sizeLods[ lodOut ]; var x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize ); var y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) + 2 * outputSize * ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 ); _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); renderer.setRenderTarget( targetOut ); renderer.render( blurMesh, _flatCamera ); }; function _isLDR( texture ) { if ( texture === undefined || texture.type !== UnsignedByteType ) { return false; } return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding; } function _createPlanes() { var _lodPlanes = []; var _sizeLods = []; var _sigmas = []; var lod = LOD_MAX; for ( var i = 0; i < TOTAL_LODS; i ++ ) { var sizeLod = Math.pow( 2, lod ); _sizeLods.push( sizeLod ); var sigma = 1.0 / sizeLod; if ( i > LOD_MAX - LOD_MIN ) { sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ]; } else if ( i == 0 ) { sigma = 0; } _sigmas.push( sigma ); var texelSize = 1.0 / ( sizeLod - 1 ); var min = - texelSize / 2; var max = 1 + texelSize / 2; var uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; var cubeFaces = 6; var vertices = 6; var positionSize = 3; var uvSize = 2; var faceIndexSize = 1; var position = new Float32Array( positionSize * vertices * cubeFaces ); var uv = new Float32Array( uvSize * vertices * cubeFaces ); var faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); for ( var face = 0; face < cubeFaces; face ++ ) { var x = ( face % 3 ) * 2 / 3 - 1; var y = face > 2 ? 0 : - 1; var coordinates = [ x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0 ]; position.set( coordinates, positionSize * vertices * face ); uv.set( uv1, uvSize * vertices * face ); var fill = [ face, face, face, face, face, face ]; faceIndex.set( fill, faceIndexSize * vertices * face ); } var planes = new BufferGeometry(); planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); _lodPlanes.push( planes ); if ( lod > LOD_MIN ) { lod --; } } return { _lodPlanes: _lodPlanes, _sizeLods: _sizeLods, _sigmas: _sigmas }; } function _createRenderTarget( params ) { var cubeUVRenderTarget = new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params ); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } function _setViewport( target, x, y, width, height ) { target.viewport.set( x, y, width, height ); target.scissor.set( x, y, width, height ); } function _getBlurShader( maxSamples ) { var weights = new Float32Array( maxSamples ); var poleAxis = new Vector3( 0, 1, 0 ); var shaderMaterial = new RawShaderMaterial( { name: 'SphericalGaussianBlur', defines: { 'n': maxSamples }, uniforms: { 'envMap': { value: null }, 'samples': { value: 1 }, 'weights': { value: weights }, 'latitudinal': { value: false }, 'dTheta': { value: 0 }, 'mipInt': { value: 0 }, 'poleAxis': { value: poleAxis }, 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */("\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform int samples;\n\t\t\tuniform float weights[ n ];\n\t\t\tuniform bool latitudinal;\n\t\t\tuniform float dTheta;\n\t\t\tuniform float mipInt;\n\t\t\tuniform vec3 poleAxis;\n\n\t\t\t" + (_getEncodings()) + "\n\n\t\t\t#define ENVMAP_TYPE_CUBE_UV\n\t\t\t#include \n\n\t\t\tvec3 getSample( float theta, vec3 axis ) {\n\n\t\t\t\tfloat cosTheta = cos( theta );\n\t\t\t\t// Rodrigues' axis-angle rotation\n\t\t\t\tvec3 sampleDirection = vOutputDirection * cosTheta\n\t\t\t\t\t+ cross( axis, vOutputDirection ) * sin( theta )\n\t\t\t\t\t+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );\n\n\t\t\t\treturn bilinearCubeUV( envMap, sampleDirection, mipInt );\n\n\t\t\t}\n\n\t\t\tvoid main() {\n\n\t\t\t\tvec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );\n\n\t\t\t\tif ( all( equal( axis, vec3( 0.0 ) ) ) ) {\n\n\t\t\t\t\taxis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );\n\n\t\t\t\t}\n\n\t\t\t\taxis = normalize( axis );\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t\t\t\tgl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );\n\n\t\t\t\tfor ( int i = 1; i < n; i++ ) {\n\n\t\t\t\t\tif ( i >= samples ) {\n\n\t\t\t\t\t\tbreak;\n\n\t\t\t\t\t}\n\n\t\t\t\t\tfloat theta = dTheta * float( i );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( theta, axis );\n\n\t\t\t\t}\n\n\t\t\t\tgl_FragColor = linearToOutputTexel( gl_FragColor );\n\n\t\t\t}\n\t\t"), blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getEquirectShader() { var texelSize = new Vector2( 1, 1 ); var shaderMaterial = new RawShaderMaterial( { name: 'EquirectangularToCubeUV', uniforms: { 'envMap': { value: null }, 'texelSize': { value: texelSize }, 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */("\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform vec2 texelSize;\n\n\t\t\t" + (_getEncodings()) + "\n\n\t\t\t#include \n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\n\t\t\t\tvec3 outputDirection = normalize( vOutputDirection );\n\t\t\t\tvec2 uv = equirectUv( outputDirection );\n\n\t\t\t\tvec2 f = fract( uv / texelSize - 0.5 );\n\t\t\t\tuv -= f * texelSize;\n\t\t\t\tvec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x += texelSize.x;\n\t\t\t\tvec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.y += texelSize.y;\n\t\t\t\tvec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x -= texelSize.x;\n\t\t\t\tvec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\n\t\t\t\tvec3 tm = mix( tl, tr, f.x );\n\t\t\t\tvec3 bm = mix( bl, br, f.x );\n\t\t\t\tgl_FragColor.rgb = mix( tm, bm, f.y );\n\n\t\t\t\tgl_FragColor = linearToOutputTexel( gl_FragColor );\n\n\t\t\t}\n\t\t"), blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getCubemapShader() { var shaderMaterial = new RawShaderMaterial( { name: 'CubemapToCubeUV', uniforms: { 'envMap': { value: null }, 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */("\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform samplerCube envMap;\n\n\t\t\t" + (_getEncodings()) + "\n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t\t\t\tgl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;\n\t\t\t\tgl_FragColor = linearToOutputTexel( gl_FragColor );\n\n\t\t\t}\n\t\t"), blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getCommonVertexShader() { return /* glsl */"\n\n\t\tprecision mediump float;\n\t\tprecision mediump int;\n\n\t\tattribute vec3 position;\n\t\tattribute vec2 uv;\n\t\tattribute float faceIndex;\n\n\t\tvarying vec3 vOutputDirection;\n\n\t\t// RH coordinate system; PMREM face-indexing convention\n\t\tvec3 getDirection( vec2 uv, float face ) {\n\n\t\t\tuv = 2.0 * uv - 1.0;\n\n\t\t\tvec3 direction = vec3( uv, 1.0 );\n\n\t\t\tif ( face == 0.0 ) {\n\n\t\t\t\tdirection = direction.zyx; // ( 1, v, u ) pos x\n\n\t\t\t} else if ( face == 1.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xz *= -1.0; // ( -u, 1, -v ) pos y\n\n\t\t\t} else if ( face == 2.0 ) {\n\n\t\t\t\tdirection.x *= -1.0; // ( -u, v, 1 ) pos z\n\n\t\t\t} else if ( face == 3.0 ) {\n\n\t\t\t\tdirection = direction.zyx;\n\t\t\t\tdirection.xz *= -1.0; // ( -1, v, -u ) neg x\n\n\t\t\t} else if ( face == 4.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xy *= -1.0; // ( -u, -1, v ) neg y\n\n\t\t\t} else if ( face == 5.0 ) {\n\n\t\t\t\tdirection.z *= -1.0; // ( u, v, -1 ) neg z\n\n\t\t\t}\n\n\t\t\treturn direction;\n\n\t\t}\n\n\t\tvoid main() {\n\n\t\t\tvOutputDirection = getDirection( uv, faceIndex );\n\t\t\tgl_Position = vec4( position, 1.0 );\n\n\t\t}\n\t"; } function _getEncodings() { return /* glsl */"\n\n\t\tuniform int inputEncoding;\n\t\tuniform int outputEncoding;\n\n\t\t#include \n\n\t\tvec4 inputTexelToLinear( vec4 value ) {\n\n\t\t\tif ( inputEncoding == 0 ) {\n\n\t\t\t\treturn value;\n\n\t\t\t} else if ( inputEncoding == 1 ) {\n\n\t\t\t\treturn sRGBToLinear( value );\n\n\t\t\t} else if ( inputEncoding == 2 ) {\n\n\t\t\t\treturn RGBEToLinear( value );\n\n\t\t\t} else if ( inputEncoding == 3 ) {\n\n\t\t\t\treturn RGBMToLinear( value, 7.0 );\n\n\t\t\t} else if ( inputEncoding == 4 ) {\n\n\t\t\t\treturn RGBMToLinear( value, 16.0 );\n\n\t\t\t} else if ( inputEncoding == 5 ) {\n\n\t\t\t\treturn RGBDToLinear( value, 256.0 );\n\n\t\t\t} else {\n\n\t\t\t\treturn GammaToLinear( value, 2.2 );\n\n\t\t\t}\n\n\t\t}\n\n\t\tvec4 linearToOutputTexel( vec4 value ) {\n\n\t\t\tif ( outputEncoding == 0 ) {\n\n\t\t\t\treturn value;\n\n\t\t\t} else if ( outputEncoding == 1 ) {\n\n\t\t\t\treturn LinearTosRGB( value );\n\n\t\t\t} else if ( outputEncoding == 2 ) {\n\n\t\t\t\treturn LinearToRGBE( value );\n\n\t\t\t} else if ( outputEncoding == 3 ) {\n\n\t\t\t\treturn LinearToRGBM( value, 7.0 );\n\n\t\t\t} else if ( outputEncoding == 4 ) {\n\n\t\t\t\treturn LinearToRGBM( value, 16.0 );\n\n\t\t\t} else if ( outputEncoding == 5 ) {\n\n\t\t\t\treturn LinearToRGBD( value, 256.0 );\n\n\t\t\t} else {\n\n\t\t\t\treturn LinearToGamma( value, 2.2 );\n\n\t\t\t}\n\n\t\t}\n\n\t\tvec4 envMapTexelToLinear( vec4 color ) {\n\n\t\t\treturn inputTexelToLinear( color );\n\n\t\t}\n\t"; } function Face4( a, b, c, d, normal, color, materialIndex ) { console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' ); return new Face3( a, b, c, normal, color, materialIndex ); } var LineStrip = 0; var LinePieces = 1; var NoColors = 0; var FaceColors = 1; var VertexColors = 2; function MeshFaceMaterial( materials ) { console.warn( 'THREE.MeshFaceMaterial has been removed. Use an Array instead.' ); return materials; } function MultiMaterial( materials ) { if ( materials === undefined ) { materials = []; } console.warn( 'THREE.MultiMaterial has been removed. Use an Array instead.' ); materials.isMultiMaterial = true; materials.materials = materials; materials.clone = function () { return materials.slice(); }; return materials; } function PointCloud( geometry, material ) { console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' ); return new Points( geometry, material ); } function Particle( material ) { console.warn( 'THREE.Particle has been renamed to THREE.Sprite.' ); return new Sprite( material ); } function ParticleSystem( geometry, material ) { console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' ); return new Points( geometry, material ); } function PointCloudMaterial( parameters ) { console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters ); } function ParticleBasicMaterial( parameters ) { console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters ); } function ParticleSystemMaterial( parameters ) { console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters ); } function Vertex( x, y, z ) { console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' ); return new Vector3( x, y, z ); } // function DynamicBufferAttribute( array, itemSize ) { console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.' ); return new BufferAttribute( array, itemSize ).setUsage( DynamicDrawUsage ); } function Int8Attribute( array, itemSize ) { console.warn( 'THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.' ); return new Int8BufferAttribute( array, itemSize ); } function Uint8Attribute( array, itemSize ) { console.warn( 'THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.' ); return new Uint8BufferAttribute( array, itemSize ); } function Uint8ClampedAttribute( array, itemSize ) { console.warn( 'THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.' ); return new Uint8ClampedBufferAttribute( array, itemSize ); } function Int16Attribute( array, itemSize ) { console.warn( 'THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.' ); return new Int16BufferAttribute( array, itemSize ); } function Uint16Attribute( array, itemSize ) { console.warn( 'THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.' ); return new Uint16BufferAttribute( array, itemSize ); } function Int32Attribute( array, itemSize ) { console.warn( 'THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.' ); return new Int32BufferAttribute( array, itemSize ); } function Uint32Attribute( array, itemSize ) { console.warn( 'THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.' ); return new Uint32BufferAttribute( array, itemSize ); } function Float32Attribute( array, itemSize ) { console.warn( 'THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.' ); return new Float32BufferAttribute( array, itemSize ); } function Float64Attribute( array, itemSize ) { console.warn( 'THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.' ); return new Float64BufferAttribute( array, itemSize ); } // Curve.create = function ( construct, getPoint ) { console.log( 'THREE.Curve.create() has been deprecated' ); construct.prototype = Object.create( Curve.prototype ); construct.prototype.constructor = construct; construct.prototype.getPoint = getPoint; return construct; }; // Object.assign( CurvePath.prototype, { createPointsGeometry: function ( divisions ) { console.warn( 'THREE.CurvePath: .createPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' ); // generate geometry from path points (for Line or Points objects) var pts = this.getPoints( divisions ); return this.createGeometry( pts ); }, createSpacedPointsGeometry: function ( divisions ) { console.warn( 'THREE.CurvePath: .createSpacedPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' ); // generate geometry from equidistant sampling along the path var pts = this.getSpacedPoints( divisions ); return this.createGeometry( pts ); }, createGeometry: function ( points ) { console.warn( 'THREE.CurvePath: .createGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' ); var geometry = new Geometry(); for ( var i = 0, l = points.length; i < l; i ++ ) { var point = points[ i ]; geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) ); } return geometry; } } ); // Object.assign( Path.prototype, { fromPoints: function ( points ) { console.warn( 'THREE.Path: .fromPoints() has been renamed to .setFromPoints().' ); return this.setFromPoints( points ); } } ); // function ClosedSplineCurve3( points ) { console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' ); CatmullRomCurve3.call( this, points ); this.type = 'catmullrom'; this.closed = true; } ClosedSplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype ); // function SplineCurve3( points ) { console.warn( 'THREE.SplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' ); CatmullRomCurve3.call( this, points ); this.type = 'catmullrom'; } SplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype ); // function Spline( points ) { console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' ); CatmullRomCurve3.call( this, points ); this.type = 'catmullrom'; } Spline.prototype = Object.create( CatmullRomCurve3.prototype ); Object.assign( Spline.prototype, { initFromArray: function ( /* a */ ) { console.error( 'THREE.Spline: .initFromArray() has been removed.' ); }, getControlPointsArray: function ( /* optionalTarget */ ) { console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' ); }, reparametrizeByArcLength: function ( /* samplingCoef */ ) { console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' ); } } ); // function AxisHelper( size ) { console.warn( 'THREE.AxisHelper has been renamed to THREE.AxesHelper.' ); return new AxesHelper( size ); } function BoundingBoxHelper( object, color ) { console.warn( 'THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.' ); return new BoxHelper( object, color ); } function EdgesHelper( object, hex ) { console.warn( 'THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.' ); return new LineSegments( new EdgesGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) ); } GridHelper.prototype.setColors = function () { console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' ); }; SkeletonHelper.prototype.update = function () { console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' ); }; function WireframeHelper( object, hex ) { console.warn( 'THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.' ); return new LineSegments( new WireframeGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) ); } // Object.assign( Loader.prototype, { extractUrlBase: function ( url ) { console.warn( 'THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.' ); return LoaderUtils.extractUrlBase( url ); } } ); Loader.Handlers = { add: function ( /* regex, loader */ ) { console.error( 'THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.' ); }, get: function ( /* file */ ) { console.error( 'THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.' ); } }; function XHRLoader( manager ) { console.warn( 'THREE.XHRLoader has been renamed to THREE.FileLoader.' ); return new FileLoader( manager ); } function BinaryTextureLoader( manager ) { console.warn( 'THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.' ); return new DataTextureLoader( manager ); } Object.assign( ObjectLoader.prototype, { setTexturePath: function ( value ) { console.warn( 'THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().' ); return this.setResourcePath( value ); } } ); // Object.assign( Box2.prototype, { center: function ( optionalTarget ) { console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }, empty: function () { console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }, isIntersectionBox: function ( box ) { console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }, size: function ( optionalTarget ) { console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget ); } } ); Object.assign( Box3.prototype, { center: function ( optionalTarget ) { console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }, empty: function () { console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }, isIntersectionBox: function ( box ) { console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }, isIntersectionSphere: function ( sphere ) { console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); }, size: function ( optionalTarget ) { console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget ); } } ); Object.assign( Sphere.prototype, { empty: function () { console.warn( 'THREE.Sphere: .empty() has been renamed to .isEmpty().' ); return this.isEmpty(); }, } ); Frustum.prototype.setFromMatrix = function ( m ) { console.warn( 'THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().' ); return this.setFromProjectionMatrix( m ); }; Line3.prototype.center = function ( optionalTarget ) { console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget ); }; Object.assign( MathUtils, { random16: function () { console.warn( 'THREE.Math: .random16() has been deprecated. Use Math.random() instead.' ); return Math.random(); }, nearestPowerOfTwo: function ( value ) { console.warn( 'THREE.Math: .nearestPowerOfTwo() has been renamed to .floorPowerOfTwo().' ); return MathUtils.floorPowerOfTwo( value ); }, nextPowerOfTwo: function ( value ) { console.warn( 'THREE.Math: .nextPowerOfTwo() has been renamed to .ceilPowerOfTwo().' ); return MathUtils.ceilPowerOfTwo( value ); } } ); Object.assign( Matrix3.prototype, { flattenToArrayOffset: function ( array, offset ) { console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." ); return this.toArray( array, offset ); }, multiplyVector3: function ( vector ) { console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ); return vector.applyMatrix3( this ); }, multiplyVector3Array: function ( /* a */ ) { console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.' ); }, applyToBufferAttribute: function ( attribute ) { console.warn( 'THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.' ); return attribute.applyMatrix3( this ); }, applyToVector3Array: function ( /* array, offset, length */ ) { console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' ); } } ); Object.assign( Matrix4.prototype, { extractPosition: function ( m ) { console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' ); return this.copyPosition( m ); }, flattenToArrayOffset: function ( array, offset ) { console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." ); return this.toArray( array, offset ); }, getPosition: function () { console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); return new Vector3().setFromMatrixColumn( this, 3 ); }, setRotationFromQuaternion: function ( q ) { console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); return this.makeRotationFromQuaternion( q ); }, multiplyToArray: function () { console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' ); }, multiplyVector3: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, multiplyVector4: function ( vector ) { console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, multiplyVector3Array: function ( /* a */ ) { console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.' ); }, rotateAxis: function ( v ) { console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); v.transformDirection( this ); }, crossVector: function ( vector ) { console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this ); }, translate: function () { console.error( 'THREE.Matrix4: .translate() has been removed.' ); }, rotateX: function () { console.error( 'THREE.Matrix4: .rotateX() has been removed.' ); }, rotateY: function () { console.error( 'THREE.Matrix4: .rotateY() has been removed.' ); }, rotateZ: function () { console.error( 'THREE.Matrix4: .rotateZ() has been removed.' ); }, rotateByAxis: function () { console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' ); }, applyToBufferAttribute: function ( attribute ) { console.warn( 'THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.' ); return attribute.applyMatrix4( this ); }, applyToVector3Array: function ( /* array, offset, length */ ) { console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' ); }, makeFrustum: function ( left, right, bottom, top, near, far ) { console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' ); return this.makePerspective( left, right, top, bottom, near, far ); } } ); Plane.prototype.isIntersectionLine = function ( line ) { console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' ); return this.intersectsLine( line ); }; Quaternion.prototype.multiplyVector3 = function ( vector ) { console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); return vector.applyQuaternion( this ); }; Object.assign( Ray.prototype, { isIntersectionBox: function ( box ) { console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box ); }, isIntersectionPlane: function ( plane ) { console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' ); return this.intersectsPlane( plane ); }, isIntersectionSphere: function ( sphere ) { console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere ); } } ); Object.assign( Triangle.prototype, { area: function () { console.warn( 'THREE.Triangle: .area() has been renamed to .getArea().' ); return this.getArea(); }, barycoordFromPoint: function ( point, target ) { console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' ); return this.getBarycoord( point, target ); }, midpoint: function ( target ) { console.warn( 'THREE.Triangle: .midpoint() has been renamed to .getMidpoint().' ); return this.getMidpoint( target ); }, normal: function ( target ) { console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' ); return this.getNormal( target ); }, plane: function ( target ) { console.warn( 'THREE.Triangle: .plane() has been renamed to .getPlane().' ); return this.getPlane( target ); } } ); Object.assign( Triangle, { barycoordFromPoint: function ( point, a, b, c, target ) { console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' ); return Triangle.getBarycoord( point, a, b, c, target ); }, normal: function ( a, b, c, target ) { console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' ); return Triangle.getNormal( a, b, c, target ); } } ); Object.assign( Shape.prototype, { extractAllPoints: function ( divisions ) { console.warn( 'THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.' ); return this.extractPoints( divisions ); }, extrude: function ( options ) { console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' ); return new ExtrudeGeometry( this, options ); }, makeGeometry: function ( options ) { console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' ); return new ShapeGeometry( this, options ); } } ); Object.assign( Vector2.prototype, { fromAttribute: function ( attribute, index, offset ) { console.warn( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset ); }, distanceToManhattan: function ( v ) { console.warn( 'THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ); return this.manhattanDistanceTo( v ); }, lengthManhattan: function () { console.warn( 'THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().' ); return this.manhattanLength(); } } ); Object.assign( Vector3.prototype, { setEulerFromRotationMatrix: function () { console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ); }, setEulerFromQuaternion: function () { console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ); }, getPositionFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); return this.setFromMatrixPosition( m ); }, getScaleFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); return this.setFromMatrixScale( m ); }, getColumnFromMatrix: function ( index, matrix ) { console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); return this.setFromMatrixColumn( matrix, index ); }, applyProjection: function ( m ) { console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' ); return this.applyMatrix4( m ); }, fromAttribute: function ( attribute, index, offset ) { console.warn( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset ); }, distanceToManhattan: function ( v ) { console.warn( 'THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ); return this.manhattanDistanceTo( v ); }, lengthManhattan: function () { console.warn( 'THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().' ); return this.manhattanLength(); } } ); Object.assign( Vector4.prototype, { fromAttribute: function ( attribute, index, offset ) { console.warn( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset ); }, lengthManhattan: function () { console.warn( 'THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().' ); return this.manhattanLength(); } } ); // Object.assign( Geometry.prototype, { computeTangents: function () { console.error( 'THREE.Geometry: .computeTangents() has been removed.' ); }, computeLineDistances: function () { console.error( 'THREE.Geometry: .computeLineDistances() has been removed. Use THREE.Line.computeLineDistances() instead.' ); }, applyMatrix: function ( matrix ) { console.warn( 'THREE.Geometry: .applyMatrix() has been renamed to .applyMatrix4().' ); return this.applyMatrix4( matrix ); } } ); Object.assign( Object3D.prototype, { getChildByName: function ( name ) { console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' ); return this.getObjectByName( name ); }, renderDepth: function () { console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' ); }, translate: function ( distance, axis ) { console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ); return this.translateOnAxis( axis, distance ); }, getWorldRotation: function () { console.error( 'THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.' ); }, applyMatrix: function ( matrix ) { console.warn( 'THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().' ); return this.applyMatrix4( matrix ); } } ); Object.defineProperties( Object3D.prototype, { eulerOrder: { get: function () { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); return this.rotation.order; }, set: function ( value ) { console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); this.rotation.order = value; } }, useQuaternion: { get: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); }, set: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); } } } ); Object.assign( Mesh.prototype, { setDrawMode: function () { console.error( 'THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' ); }, } ); Object.defineProperties( Mesh.prototype, { drawMode: { get: function () { console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.' ); return TrianglesDrawMode; }, set: function () { console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' ); } } } ); Object.defineProperties( LOD.prototype, { objects: { get: function () { console.warn( 'THREE.LOD: .objects has been renamed to .levels.' ); return this.levels; } } } ); Object.defineProperty( Skeleton.prototype, 'useVertexTexture', { get: function () { console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' ); }, set: function () { console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' ); } } ); SkinnedMesh.prototype.initBones = function () { console.error( 'THREE.SkinnedMesh: initBones() has been removed.' ); }; Object.defineProperty( Curve.prototype, '__arcLengthDivisions', { get: function () { console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' ); return this.arcLengthDivisions; }, set: function ( value ) { console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' ); this.arcLengthDivisions = value; } } ); // PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) { console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " + "Use .setFocalLength and .filmGauge for a photographic setup." ); if ( filmGauge !== undefined ) { this.filmGauge = filmGauge; } this.setFocalLength( focalLength ); }; // Object.defineProperties( Light.prototype, { onlyShadow: { set: function () { console.warn( 'THREE.Light: .onlyShadow has been removed.' ); } }, shadowCameraFov: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' ); this.shadow.camera.fov = value; } }, shadowCameraLeft: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' ); this.shadow.camera.left = value; } }, shadowCameraRight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' ); this.shadow.camera.right = value; } }, shadowCameraTop: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' ); this.shadow.camera.top = value; } }, shadowCameraBottom: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' ); this.shadow.camera.bottom = value; } }, shadowCameraNear: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' ); this.shadow.camera.near = value; } }, shadowCameraFar: { set: function ( value ) { console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' ); this.shadow.camera.far = value; } }, shadowCameraVisible: { set: function () { console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' ); } }, shadowBias: { set: function ( value ) { console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' ); this.shadow.bias = value; } }, shadowDarkness: { set: function () { console.warn( 'THREE.Light: .shadowDarkness has been removed.' ); } }, shadowMapWidth: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' ); this.shadow.mapSize.width = value; } }, shadowMapHeight: { set: function ( value ) { console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' ); this.shadow.mapSize.height = value; } } } ); // Object.defineProperties( BufferAttribute.prototype, { length: { get: function () { console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' ); return this.array.length; } }, dynamic: { get: function () { console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' ); return this.usage === DynamicDrawUsage; }, set: function ( /* value */ ) { console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' ); this.setUsage( DynamicDrawUsage ); } } } ); Object.assign( BufferAttribute.prototype, { setDynamic: function ( value ) { console.warn( 'THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.' ); this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage ); return this; }, copyIndicesArray: function ( /* indices */ ) { console.error( 'THREE.BufferAttribute: .copyIndicesArray() has been removed.' ); }, setArray: function ( /* array */ ) { console.error( 'THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' ); } } ); Object.assign( BufferGeometry.prototype, { addIndex: function ( index ) { console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' ); this.setIndex( index ); }, addAttribute: function ( name, attribute ) { console.warn( 'THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().' ); if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) { console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' ); return this.setAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) ); } if ( name === 'index' ) { console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' ); this.setIndex( attribute ); return this; } return this.setAttribute( name, attribute ); }, addDrawCall: function ( start, count, indexOffset ) { if ( indexOffset !== undefined ) { console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' ); } console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' ); this.addGroup( start, count ); }, clearDrawCalls: function () { console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' ); this.clearGroups(); }, computeTangents: function () { console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' ); }, computeOffsets: function () { console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' ); }, removeAttribute: function ( name ) { console.warn( 'THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().' ); return this.deleteAttribute( name ); }, applyMatrix: function ( matrix ) { console.warn( 'THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().' ); return this.applyMatrix4( matrix ); } } ); Object.defineProperties( BufferGeometry.prototype, { drawcalls: { get: function () { console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' ); return this.groups; } }, offsets: { get: function () { console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' ); return this.groups; } } } ); Object.defineProperties( InstancedBufferGeometry.prototype, { maxInstancedCount: { get: function () { console.warn( 'THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.' ); return this.instanceCount; }, set: function ( value ) { console.warn( 'THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.' ); this.instanceCount = value; } } } ); Object.defineProperties( Raycaster.prototype, { linePrecision: { get: function () { console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' ); return this.params.Line.threshold; }, set: function ( value ) { console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' ); this.params.Line.threshold = value; } } } ); Object.defineProperties( InterleavedBuffer.prototype, { dynamic: { get: function () { console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' ); return this.usage === DynamicDrawUsage; }, set: function ( value ) { console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' ); this.setUsage( value ); } } } ); Object.assign( InterleavedBuffer.prototype, { setDynamic: function ( value ) { console.warn( 'THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.' ); this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage ); return this; }, setArray: function ( /* array */ ) { console.error( 'THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' ); } } ); // Object.assign( ExtrudeBufferGeometry.prototype, { getArrays: function () { console.error( 'THREE.ExtrudeBufferGeometry: .getArrays() has been removed.' ); }, addShapeList: function () { console.error( 'THREE.ExtrudeBufferGeometry: .addShapeList() has been removed.' ); }, addShape: function () { console.error( 'THREE.ExtrudeBufferGeometry: .addShape() has been removed.' ); } } ); // Object.assign( Scene.prototype, { dispose: function () { console.error( 'THREE.Scene: .dispose() has been removed.' ); } } ); // Object.defineProperties( Uniform.prototype, { dynamic: { set: function () { console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' ); } }, onUpdate: { value: function () { console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' ); return this; } } } ); // Object.defineProperties( Material.prototype, { wrapAround: { get: function () { console.warn( 'THREE.Material: .wrapAround has been removed.' ); }, set: function () { console.warn( 'THREE.Material: .wrapAround has been removed.' ); } }, overdraw: { get: function () { console.warn( 'THREE.Material: .overdraw has been removed.' ); }, set: function () { console.warn( 'THREE.Material: .overdraw has been removed.' ); } }, wrapRGB: { get: function () { console.warn( 'THREE.Material: .wrapRGB has been removed.' ); return new Color(); } }, shading: { get: function () { console.error( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); }, set: function ( value ) { console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); this.flatShading = ( value === FlatShading ); } }, stencilMask: { get: function () { console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' ); return this.stencilFuncMask; }, set: function ( value ) { console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' ); this.stencilFuncMask = value; } } } ); Object.defineProperties( MeshPhongMaterial.prototype, { metal: { get: function () { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' ); return false; }, set: function () { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' ); } } } ); Object.defineProperties( MeshPhysicalMaterial.prototype, { transparency: { get: function () { console.warn( 'THREE.MeshPhysicalMaterial: .transparency has been renamed to .transmission.' ); return this.transmission; }, set: function ( value ) { console.warn( 'THREE.MeshPhysicalMaterial: .transparency has been renamed to .transmission.' ); this.transmission = value; } } } ); Object.defineProperties( ShaderMaterial.prototype, { derivatives: { get: function () { console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); return this.extensions.derivatives; }, set: function ( value ) { console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); this.extensions.derivatives = value; } } } ); // Object.assign( WebGLRenderer.prototype, { clearTarget: function ( renderTarget, color, depth, stencil ) { console.warn( 'THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.' ); this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil ); }, animate: function ( callback ) { console.warn( 'THREE.WebGLRenderer: .animate() is now .setAnimationLoop().' ); this.setAnimationLoop( callback ); }, getCurrentRenderTarget: function () { console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' ); return this.getRenderTarget(); }, getMaxAnisotropy: function () { console.warn( 'THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().' ); return this.capabilities.getMaxAnisotropy(); }, getPrecision: function () { console.warn( 'THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.' ); return this.capabilities.precision; }, resetGLState: function () { console.warn( 'THREE.WebGLRenderer: .resetGLState() is now .state.reset().' ); return this.state.reset(); }, supportsFloatTextures: function () { console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' ); return this.extensions.get( 'OES_texture_float' ); }, supportsHalfFloatTextures: function () { console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' ); return this.extensions.get( 'OES_texture_half_float' ); }, supportsStandardDerivatives: function () { console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' ); return this.extensions.get( 'OES_standard_derivatives' ); }, supportsCompressedTextureS3TC: function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_s3tc' ); }, supportsCompressedTexturePVRTC: function () { console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' ); }, supportsBlendMinMax: function () { console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' ); return this.extensions.get( 'EXT_blend_minmax' ); }, supportsVertexTextures: function () { console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' ); return this.capabilities.vertexTextures; }, supportsInstancedArrays: function () { console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' ); return this.extensions.get( 'ANGLE_instanced_arrays' ); }, enableScissorTest: function ( boolean ) { console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' ); this.setScissorTest( boolean ); }, initMaterial: function () { console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' ); }, addPrePlugin: function () { console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' ); }, addPostPlugin: function () { console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' ); }, updateShadowMap: function () { console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' ); }, setFaceCulling: function () { console.warn( 'THREE.WebGLRenderer: .setFaceCulling() has been removed.' ); }, allocTextureUnit: function () { console.warn( 'THREE.WebGLRenderer: .allocTextureUnit() has been removed.' ); }, setTexture: function () { console.warn( 'THREE.WebGLRenderer: .setTexture() has been removed.' ); }, setTexture2D: function () { console.warn( 'THREE.WebGLRenderer: .setTexture2D() has been removed.' ); }, setTextureCube: function () { console.warn( 'THREE.WebGLRenderer: .setTextureCube() has been removed.' ); }, getActiveMipMapLevel: function () { console.warn( 'THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().' ); return this.getActiveMipmapLevel(); } } ); Object.defineProperties( WebGLRenderer.prototype, { shadowMapEnabled: { get: function () { return this.shadowMap.enabled; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' ); this.shadowMap.enabled = value; } }, shadowMapType: { get: function () { return this.shadowMap.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' ); this.shadowMap.type = value; } }, shadowMapCullFace: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' ); return undefined; }, set: function ( /* value */ ) { console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' ); } }, context: { get: function () { console.warn( 'THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.' ); return this.getContext(); } }, vr: { get: function () { console.warn( 'THREE.WebGLRenderer: .vr has been renamed to .xr' ); return this.xr; } }, gammaInput: { get: function () { console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' ); return false; }, set: function () { console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' ); } }, gammaOutput: { get: function () { console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' ); return false; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' ); this.outputEncoding = ( value === true ) ? sRGBEncoding : LinearEncoding; } }, toneMappingWhitePoint: { get: function () { console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' ); return 1.0; }, set: function () { console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' ); } }, } ); Object.defineProperties( WebGLShadowMap.prototype, { cullFace: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' ); return undefined; }, set: function ( /* cullFace */ ) { console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' ); } }, renderReverseSided: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' ); return undefined; }, set: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' ); } }, renderSingleSided: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' ); return undefined; }, set: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' ); } } } ); function WebGLRenderTargetCube( width, height, options ) { console.warn( 'THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).' ); return new WebGLCubeRenderTarget( width, options ); } // Object.defineProperties( WebGLRenderTarget.prototype, { wrapS: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); return this.texture.wrapS; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); this.texture.wrapS = value; } }, wrapT: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); return this.texture.wrapT; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); this.texture.wrapT = value; } }, magFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); return this.texture.magFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); this.texture.magFilter = value; } }, minFilter: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); return this.texture.minFilter; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); this.texture.minFilter = value; } }, anisotropy: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); return this.texture.anisotropy; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); this.texture.anisotropy = value; } }, offset: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); return this.texture.offset; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); this.texture.offset = value; } }, repeat: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); return this.texture.repeat; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); this.texture.repeat = value; } }, format: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); return this.texture.format; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); this.texture.format = value; } }, type: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); return this.texture.type; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); this.texture.type = value; } }, generateMipmaps: { get: function () { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); return this.texture.generateMipmaps; }, set: function ( value ) { console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); this.texture.generateMipmaps = value; } } } ); // Object.defineProperties( Audio.prototype, { load: { value: function ( file ) { console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' ); var scope = this; var audioLoader = new AudioLoader(); audioLoader.load( file, function ( buffer ) { scope.setBuffer( buffer ); } ); return this; } }, startTime: { set: function () { console.warn( 'THREE.Audio: .startTime is now .play( delay ).' ); } } } ); AudioAnalyser.prototype.getData = function () { console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' ); return this.getFrequencyData(); }; // CubeCamera.prototype.updateCubeMap = function ( renderer, scene ) { console.warn( 'THREE.CubeCamera: .updateCubeMap() is now .update().' ); return this.update( renderer, scene ); }; // var GeometryUtils = { merge: function ( geometry1, geometry2, materialIndexOffset ) { console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' ); var matrix; if ( geometry2.isMesh ) { geometry2.matrixAutoUpdate && geometry2.updateMatrix(); matrix = geometry2.matrix; geometry2 = geometry2.geometry; } geometry1.merge( geometry2, matrix, materialIndexOffset ); }, center: function ( geometry ) { console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' ); return geometry.center(); } }; ImageUtils.crossOrigin = undefined; ImageUtils.loadTexture = function ( url, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' ); var loader = new TextureLoader(); loader.setCrossOrigin( this.crossOrigin ); var texture = loader.load( url, onLoad, undefined, onError ); if ( mapping ) { texture.mapping = mapping; } return texture; }; ImageUtils.loadTextureCube = function ( urls, mapping, onLoad, onError ) { console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' ); var loader = new CubeTextureLoader(); loader.setCrossOrigin( this.crossOrigin ); var texture = loader.load( urls, onLoad, undefined, onError ); if ( mapping ) { texture.mapping = mapping; } return texture; }; ImageUtils.loadCompressedTexture = function () { console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' ); }; ImageUtils.loadCompressedTextureCube = function () { console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' ); }; // function CanvasRenderer() { console.error( 'THREE.CanvasRenderer has been removed' ); } // function JSONLoader() { console.error( 'THREE.JSONLoader has been removed.' ); } // var SceneUtils = { createMultiMaterialObject: function ( /* geometry, materials */ ) { console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' ); }, detach: function ( /* child, parent, scene */ ) { console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' ); }, attach: function ( /* child, scene, parent */ ) { console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' ); } }; // function LensFlare() { console.error( 'THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js' ); } if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { /* eslint-disable no-undef */ __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: { revision: REVISION, } } ) ); /* eslint-enable no-undef */ } exports.ACESFilmicToneMapping = ACESFilmicToneMapping; exports.AddEquation = AddEquation; exports.AddOperation = AddOperation; exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode; exports.AdditiveBlending = AdditiveBlending; exports.AlphaFormat = AlphaFormat; exports.AlwaysDepth = AlwaysDepth; exports.AlwaysStencilFunc = AlwaysStencilFunc; exports.AmbientLight = AmbientLight; exports.AmbientLightProbe = AmbientLightProbe; exports.AnimationClip = AnimationClip; exports.AnimationLoader = AnimationLoader; exports.AnimationMixer = AnimationMixer; exports.AnimationObjectGroup = AnimationObjectGroup; exports.AnimationUtils = AnimationUtils; exports.ArcCurve = ArcCurve; exports.ArrayCamera = ArrayCamera; exports.ArrowHelper = ArrowHelper; exports.Audio = Audio; exports.AudioAnalyser = AudioAnalyser; exports.AudioContext = AudioContext; exports.AudioListener = AudioListener; exports.AudioLoader = AudioLoader; exports.AxesHelper = AxesHelper; exports.AxisHelper = AxisHelper; exports.BackSide = BackSide; exports.BasicDepthPacking = BasicDepthPacking; exports.BasicShadowMap = BasicShadowMap; exports.BinaryTextureLoader = BinaryTextureLoader; exports.Bone = Bone; exports.BooleanKeyframeTrack = BooleanKeyframeTrack; exports.BoundingBoxHelper = BoundingBoxHelper; exports.Box2 = Box2; exports.Box3 = Box3; exports.Box3Helper = Box3Helper; exports.BoxBufferGeometry = BoxBufferGeometry; exports.BoxGeometry = BoxGeometry; exports.BoxHelper = BoxHelper; exports.BufferAttribute = BufferAttribute; exports.BufferGeometry = BufferGeometry; exports.BufferGeometryLoader = BufferGeometryLoader; exports.ByteType = ByteType; exports.Cache = Cache; exports.Camera = Camera; exports.CameraHelper = CameraHelper; exports.CanvasRenderer = CanvasRenderer; exports.CanvasTexture = CanvasTexture; exports.CatmullRomCurve3 = CatmullRomCurve3; exports.CineonToneMapping = CineonToneMapping; exports.CircleBufferGeometry = CircleBufferGeometry; exports.CircleGeometry = CircleGeometry; exports.ClampToEdgeWrapping = ClampToEdgeWrapping; exports.Clock = Clock; exports.ClosedSplineCurve3 = ClosedSplineCurve3; exports.Color = Color; exports.ColorKeyframeTrack = ColorKeyframeTrack; exports.CompressedTexture = CompressedTexture; exports.CompressedTextureLoader = CompressedTextureLoader; exports.ConeBufferGeometry = ConeBufferGeometry; exports.ConeGeometry = ConeGeometry; exports.CubeCamera = CubeCamera; exports.CubeGeometry = BoxGeometry; exports.CubeReflectionMapping = CubeReflectionMapping; exports.CubeRefractionMapping = CubeRefractionMapping; exports.CubeTexture = CubeTexture; exports.CubeTextureLoader = CubeTextureLoader; exports.CubeUVReflectionMapping = CubeUVReflectionMapping; exports.CubeUVRefractionMapping = CubeUVRefractionMapping; exports.CubicBezierCurve = CubicBezierCurve; exports.CubicBezierCurve3 = CubicBezierCurve3; exports.CubicInterpolant = CubicInterpolant; exports.CullFaceBack = CullFaceBack; exports.CullFaceFront = CullFaceFront; exports.CullFaceFrontBack = CullFaceFrontBack; exports.CullFaceNone = CullFaceNone; exports.Curve = Curve; exports.CurvePath = CurvePath; exports.CustomBlending = CustomBlending; exports.CustomToneMapping = CustomToneMapping; exports.CylinderBufferGeometry = CylinderBufferGeometry; exports.CylinderGeometry = CylinderGeometry; exports.Cylindrical = Cylindrical; exports.DataTexture = DataTexture; exports.DataTexture2DArray = DataTexture2DArray; exports.DataTexture3D = DataTexture3D; exports.DataTextureLoader = DataTextureLoader; exports.DecrementStencilOp = DecrementStencilOp; exports.DecrementWrapStencilOp = DecrementWrapStencilOp; exports.DefaultLoadingManager = DefaultLoadingManager; exports.DepthFormat = DepthFormat; exports.DepthStencilFormat = DepthStencilFormat; exports.DepthTexture = DepthTexture; exports.DirectionalLight = DirectionalLight; exports.DirectionalLightHelper = DirectionalLightHelper; exports.DiscreteInterpolant = DiscreteInterpolant; exports.DodecahedronBufferGeometry = DodecahedronBufferGeometry; exports.DodecahedronGeometry = DodecahedronGeometry; exports.DoubleSide = DoubleSide; exports.DstAlphaFactor = DstAlphaFactor; exports.DstColorFactor = DstColorFactor; exports.DynamicBufferAttribute = DynamicBufferAttribute; exports.DynamicCopyUsage = DynamicCopyUsage; exports.DynamicDrawUsage = DynamicDrawUsage; exports.DynamicReadUsage = DynamicReadUsage; exports.EdgesGeometry = EdgesGeometry; exports.EdgesHelper = EdgesHelper; exports.EllipseCurve = EllipseCurve; exports.EqualDepth = EqualDepth; exports.EqualStencilFunc = EqualStencilFunc; exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping; exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping; exports.Euler = Euler; exports.EventDispatcher = EventDispatcher; exports.ExtrudeBufferGeometry = ExtrudeBufferGeometry; exports.ExtrudeGeometry = ExtrudeGeometry; exports.Face3 = Face3; exports.Face4 = Face4; exports.FaceColors = FaceColors; exports.FileLoader = FileLoader; exports.FlatShading = FlatShading; exports.Float32Attribute = Float32Attribute; exports.Float32BufferAttribute = Float32BufferAttribute; exports.Float64Attribute = Float64Attribute; exports.Float64BufferAttribute = Float64BufferAttribute; exports.FloatType = FloatType; exports.Fog = Fog; exports.FogExp2 = FogExp2; exports.Font = Font; exports.FontLoader = FontLoader; exports.FrontSide = FrontSide; exports.Frustum = Frustum; exports.GLBufferAttribute = GLBufferAttribute; exports.GLSL1 = GLSL1; exports.GLSL3 = GLSL3; exports.GammaEncoding = GammaEncoding; exports.Geometry = Geometry; exports.GeometryUtils = GeometryUtils; exports.GreaterDepth = GreaterDepth; exports.GreaterEqualDepth = GreaterEqualDepth; exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc; exports.GreaterStencilFunc = GreaterStencilFunc; exports.GridHelper = GridHelper; exports.Group = Group; exports.HalfFloatType = HalfFloatType; exports.HemisphereLight = HemisphereLight; exports.HemisphereLightHelper = HemisphereLightHelper; exports.HemisphereLightProbe = HemisphereLightProbe; exports.IcosahedronBufferGeometry = IcosahedronBufferGeometry; exports.IcosahedronGeometry = IcosahedronGeometry; exports.ImageBitmapLoader = ImageBitmapLoader; exports.ImageLoader = ImageLoader; exports.ImageUtils = ImageUtils; exports.ImmediateRenderObject = ImmediateRenderObject; exports.IncrementStencilOp = IncrementStencilOp; exports.IncrementWrapStencilOp = IncrementWrapStencilOp; exports.InstancedBufferAttribute = InstancedBufferAttribute; exports.InstancedBufferGeometry = InstancedBufferGeometry; exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer; exports.InstancedMesh = InstancedMesh; exports.Int16Attribute = Int16Attribute; exports.Int16BufferAttribute = Int16BufferAttribute; exports.Int32Attribute = Int32Attribute; exports.Int32BufferAttribute = Int32BufferAttribute; exports.Int8Attribute = Int8Attribute; exports.Int8BufferAttribute = Int8BufferAttribute; exports.IntType = IntType; exports.InterleavedBuffer = InterleavedBuffer; exports.InterleavedBufferAttribute = InterleavedBufferAttribute; exports.Interpolant = Interpolant; exports.InterpolateDiscrete = InterpolateDiscrete; exports.InterpolateLinear = InterpolateLinear; exports.InterpolateSmooth = InterpolateSmooth; exports.InvertStencilOp = InvertStencilOp; exports.JSONLoader = JSONLoader; exports.KeepStencilOp = KeepStencilOp; exports.KeyframeTrack = KeyframeTrack; exports.LOD = LOD; exports.LatheBufferGeometry = LatheBufferGeometry; exports.LatheGeometry = LatheGeometry; exports.Layers = Layers; exports.LensFlare = LensFlare; exports.LessDepth = LessDepth; exports.LessEqualDepth = LessEqualDepth; exports.LessEqualStencilFunc = LessEqualStencilFunc; exports.LessStencilFunc = LessStencilFunc; exports.Light = Light; exports.LightProbe = LightProbe; exports.LightShadow = LightShadow; exports.Line = Line; exports.Line3 = Line3; exports.LineBasicMaterial = LineBasicMaterial; exports.LineCurve = LineCurve; exports.LineCurve3 = LineCurve3; exports.LineDashedMaterial = LineDashedMaterial; exports.LineLoop = LineLoop; exports.LinePieces = LinePieces; exports.LineSegments = LineSegments; exports.LineStrip = LineStrip; exports.LinearEncoding = LinearEncoding; exports.LinearFilter = LinearFilter; exports.LinearInterpolant = LinearInterpolant; exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter; exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter; exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter; exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter; exports.LinearToneMapping = LinearToneMapping; exports.Loader = Loader; exports.LoaderUtils = LoaderUtils; exports.LoadingManager = LoadingManager; exports.LogLuvEncoding = LogLuvEncoding; exports.LoopOnce = LoopOnce; exports.LoopPingPong = LoopPingPong; exports.LoopRepeat = LoopRepeat; exports.LuminanceAlphaFormat = LuminanceAlphaFormat; exports.LuminanceFormat = LuminanceFormat; exports.MOUSE = MOUSE; exports.Material = Material; exports.MaterialLoader = MaterialLoader; exports.Math = MathUtils; exports.MathUtils = MathUtils; exports.Matrix3 = Matrix3; exports.Matrix4 = Matrix4; exports.MaxEquation = MaxEquation; exports.Mesh = Mesh; exports.MeshBasicMaterial = MeshBasicMaterial; exports.MeshDepthMaterial = MeshDepthMaterial; exports.MeshDistanceMaterial = MeshDistanceMaterial; exports.MeshFaceMaterial = MeshFaceMaterial; exports.MeshLambertMaterial = MeshLambertMaterial; exports.MeshMatcapMaterial = MeshMatcapMaterial; exports.MeshNormalMaterial = MeshNormalMaterial; exports.MeshPhongMaterial = MeshPhongMaterial; exports.MeshPhysicalMaterial = MeshPhysicalMaterial; exports.MeshStandardMaterial = MeshStandardMaterial; exports.MeshToonMaterial = MeshToonMaterial; exports.MinEquation = MinEquation; exports.MirroredRepeatWrapping = MirroredRepeatWrapping; exports.MixOperation = MixOperation; exports.MultiMaterial = MultiMaterial; exports.MultiplyBlending = MultiplyBlending; exports.MultiplyOperation = MultiplyOperation; exports.NearestFilter = NearestFilter; exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter; exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter; exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter; exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter; exports.NeverDepth = NeverDepth; exports.NeverStencilFunc = NeverStencilFunc; exports.NoBlending = NoBlending; exports.NoColors = NoColors; exports.NoToneMapping = NoToneMapping; exports.NormalAnimationBlendMode = NormalAnimationBlendMode; exports.NormalBlending = NormalBlending; exports.NotEqualDepth = NotEqualDepth; exports.NotEqualStencilFunc = NotEqualStencilFunc; exports.NumberKeyframeTrack = NumberKeyframeTrack; exports.Object3D = Object3D; exports.ObjectLoader = ObjectLoader; exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap; exports.OctahedronBufferGeometry = OctahedronBufferGeometry; exports.OctahedronGeometry = OctahedronGeometry; exports.OneFactor = OneFactor; exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor; exports.OneMinusDstColorFactor = OneMinusDstColorFactor; exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor; exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor; exports.OrthographicCamera = OrthographicCamera; exports.PCFShadowMap = PCFShadowMap; exports.PCFSoftShadowMap = PCFSoftShadowMap; exports.PMREMGenerator = PMREMGenerator; exports.ParametricBufferGeometry = ParametricBufferGeometry; exports.ParametricGeometry = ParametricGeometry; exports.Particle = Particle; exports.ParticleBasicMaterial = ParticleBasicMaterial; exports.ParticleSystem = ParticleSystem; exports.ParticleSystemMaterial = ParticleSystemMaterial; exports.Path = Path; exports.PerspectiveCamera = PerspectiveCamera; exports.Plane = Plane; exports.PlaneBufferGeometry = PlaneBufferGeometry; exports.PlaneGeometry = PlaneGeometry; exports.PlaneHelper = PlaneHelper; exports.PointCloud = PointCloud; exports.PointCloudMaterial = PointCloudMaterial; exports.PointLight = PointLight; exports.PointLightHelper = PointLightHelper; exports.Points = Points; exports.PointsMaterial = PointsMaterial; exports.PolarGridHelper = PolarGridHelper; exports.PolyhedronBufferGeometry = PolyhedronBufferGeometry; exports.PolyhedronGeometry = PolyhedronGeometry; exports.PositionalAudio = PositionalAudio; exports.PropertyBinding = PropertyBinding; exports.PropertyMixer = PropertyMixer; exports.QuadraticBezierCurve = QuadraticBezierCurve; exports.QuadraticBezierCurve3 = QuadraticBezierCurve3; exports.Quaternion = Quaternion; exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack; exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant; exports.REVISION = REVISION; exports.RGBADepthPacking = RGBADepthPacking; exports.RGBAFormat = RGBAFormat; exports.RGBAIntegerFormat = RGBAIntegerFormat; exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format; exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format; exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format; exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format; exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format; exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format; exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format; exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format; exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format; exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format; exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format; exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format; exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format; exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format; exports.RGBA_BPTC_Format = RGBA_BPTC_Format; exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format; exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format; exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format; exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format; exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format; exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format; exports.RGBDEncoding = RGBDEncoding; exports.RGBEEncoding = RGBEEncoding; exports.RGBEFormat = RGBEFormat; exports.RGBFormat = RGBFormat; exports.RGBIntegerFormat = RGBIntegerFormat; exports.RGBM16Encoding = RGBM16Encoding; exports.RGBM7Encoding = RGBM7Encoding; exports.RGB_ETC1_Format = RGB_ETC1_Format; exports.RGB_ETC2_Format = RGB_ETC2_Format; exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format; exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format; exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format; exports.RGFormat = RGFormat; exports.RGIntegerFormat = RGIntegerFormat; exports.RawShaderMaterial = RawShaderMaterial; exports.Ray = Ray; exports.Raycaster = Raycaster; exports.RectAreaLight = RectAreaLight; exports.RedFormat = RedFormat; exports.RedIntegerFormat = RedIntegerFormat; exports.ReinhardToneMapping = ReinhardToneMapping; exports.RepeatWrapping = RepeatWrapping; exports.ReplaceStencilOp = ReplaceStencilOp; exports.ReverseSubtractEquation = ReverseSubtractEquation; exports.RingBufferGeometry = RingBufferGeometry; exports.RingGeometry = RingGeometry; exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format; exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format; exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format; exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format; exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format; exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format; exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format; exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format; exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format; exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format; exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format; exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format; exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format; exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format; exports.Scene = Scene; exports.SceneUtils = SceneUtils; exports.ShaderChunk = ShaderChunk; exports.ShaderLib = ShaderLib; exports.ShaderMaterial = ShaderMaterial; exports.ShadowMaterial = ShadowMaterial; exports.Shape = Shape; exports.ShapeBufferGeometry = ShapeBufferGeometry; exports.ShapeGeometry = ShapeGeometry; exports.ShapePath = ShapePath; exports.ShapeUtils = ShapeUtils; exports.ShortType = ShortType; exports.Skeleton = Skeleton; exports.SkeletonHelper = SkeletonHelper; exports.SkinnedMesh = SkinnedMesh; exports.SmoothShading = SmoothShading; exports.Sphere = Sphere; exports.SphereBufferGeometry = SphereBufferGeometry; exports.SphereGeometry = SphereGeometry; exports.Spherical = Spherical; exports.SphericalHarmonics3 = SphericalHarmonics3; exports.Spline = Spline; exports.SplineCurve = SplineCurve; exports.SplineCurve3 = SplineCurve3; exports.SpotLight = SpotLight; exports.SpotLightHelper = SpotLightHelper; exports.Sprite = Sprite; exports.SpriteMaterial = SpriteMaterial; exports.SrcAlphaFactor = SrcAlphaFactor; exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor; exports.SrcColorFactor = SrcColorFactor; exports.StaticCopyUsage = StaticCopyUsage; exports.StaticDrawUsage = StaticDrawUsage; exports.StaticReadUsage = StaticReadUsage; exports.StereoCamera = StereoCamera; exports.StreamCopyUsage = StreamCopyUsage; exports.StreamDrawUsage = StreamDrawUsage; exports.StreamReadUsage = StreamReadUsage; exports.StringKeyframeTrack = StringKeyframeTrack; exports.SubtractEquation = SubtractEquation; exports.SubtractiveBlending = SubtractiveBlending; exports.TOUCH = TOUCH; exports.TangentSpaceNormalMap = TangentSpaceNormalMap; exports.TetrahedronBufferGeometry = TetrahedronBufferGeometry; exports.TetrahedronGeometry = TetrahedronGeometry; exports.TextBufferGeometry = TextBufferGeometry; exports.TextGeometry = TextGeometry; exports.Texture = Texture; exports.TextureLoader = TextureLoader; exports.TorusBufferGeometry = TorusBufferGeometry; exports.TorusGeometry = TorusGeometry; exports.TorusKnotBufferGeometry = TorusKnotBufferGeometry; exports.TorusKnotGeometry = TorusKnotGeometry; exports.Triangle = Triangle; exports.TriangleFanDrawMode = TriangleFanDrawMode; exports.TriangleStripDrawMode = TriangleStripDrawMode; exports.TrianglesDrawMode = TrianglesDrawMode; exports.TubeBufferGeometry = TubeBufferGeometry; exports.TubeGeometry = TubeGeometry; exports.UVMapping = UVMapping; exports.Uint16Attribute = Uint16Attribute; exports.Uint16BufferAttribute = Uint16BufferAttribute; exports.Uint32Attribute = Uint32Attribute; exports.Uint32BufferAttribute = Uint32BufferAttribute; exports.Uint8Attribute = Uint8Attribute; exports.Uint8BufferAttribute = Uint8BufferAttribute; exports.Uint8ClampedAttribute = Uint8ClampedAttribute; exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute; exports.Uniform = Uniform; exports.UniformsLib = UniformsLib; exports.UniformsUtils = UniformsUtils; exports.UnsignedByteType = UnsignedByteType; exports.UnsignedInt248Type = UnsignedInt248Type; exports.UnsignedIntType = UnsignedIntType; exports.UnsignedShort4444Type = UnsignedShort4444Type; exports.UnsignedShort5551Type = UnsignedShort5551Type; exports.UnsignedShort565Type = UnsignedShort565Type; exports.UnsignedShortType = UnsignedShortType; exports.VSMShadowMap = VSMShadowMap; exports.Vector2 = Vector2; exports.Vector3 = Vector3; exports.Vector4 = Vector4; exports.VectorKeyframeTrack = VectorKeyframeTrack; exports.Vertex = Vertex; exports.VertexColors = VertexColors; exports.VideoTexture = VideoTexture; exports.WebGL1Renderer = WebGL1Renderer; exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget; exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget; exports.WebGLRenderTarget = WebGLRenderTarget; exports.WebGLRenderTargetCube = WebGLRenderTargetCube; exports.WebGLRenderer = WebGLRenderer; exports.WebGLUtils = WebGLUtils; exports.WireframeGeometry = WireframeGeometry; exports.WireframeHelper = WireframeHelper; exports.WrapAroundEnding = WrapAroundEnding; exports.XHRLoader = XHRLoader; exports.ZeroCurvatureEnding = ZeroCurvatureEnding; exports.ZeroFactor = ZeroFactor; exports.ZeroSlopeEnding = ZeroSlopeEnding; exports.ZeroStencilOp = ZeroStencilOp; exports.sRGBEncoding = sRGBEncoding; Object.defineProperty(exports, '__esModule', { value: true }); }))); /***/ }) /******/ ]);