|
|
// Copyright 2012 The Obvious Corporation.
/* * leb: LEB128 utilities. */
/* * Modules used */ "use strict";
Object.defineProperty(exports, "__esModule", { value: true }); exports.default = void 0;
var _long = _interopRequireDefault(require("@xtuc/long"));
var bits = _interopRequireWildcard(require("./bits"));
var bufs = _interopRequireWildcard(require("./bufs"));
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = Object.defineProperty && Object.getOwnPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : {}; if (desc.get || desc.set) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } } newObj.default = obj; return newObj; } }
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/* * Module variables */
/** The minimum possible 32-bit signed int. */ var MIN_INT32 = -0x80000000; /** The maximum possible 32-bit signed int. */
var MAX_INT32 = 0x7fffffff; /** The maximum possible 32-bit unsigned int. */
var MAX_UINT32 = 0xffffffff; /** The minimum possible 64-bit signed int. */ // const MIN_INT64 = -0x8000000000000000;
/** * The maximum possible 64-bit signed int that is representable as a * JavaScript number. */ // const MAX_INT64 = 0x7ffffffffffffc00;
/** * The maximum possible 64-bit unsigned int that is representable as a * JavaScript number. */ // const MAX_UINT64 = 0xfffffffffffff800;
/* * Helper functions */
/** * Determines the number of bits required to encode the number * represented in the given buffer as a signed value. The buffer is * taken to represent a signed number in little-endian form. * * The number of bits to encode is the (zero-based) bit number of the * highest-order non-sign-matching bit, plus two. For example: * * 11111011 01110101 * high low * * The sign bit here is 1 (that is, it's a negative number). The highest * bit number that doesn't match the sign is bit #10 (where the lowest-order * bit is bit #0). So, we have to encode at least 12 bits total. * * As a special degenerate case, the numbers 0 and -1 each require just one bit. */
function signedBitCount(buffer) { return bits.highOrder(bits.getSign(buffer) ^ 1, buffer) + 2; } /** * Determines the number of bits required to encode the number * represented in the given buffer as an unsigned value. The buffer is * taken to represent an unsigned number in little-endian form. * * The number of bits to encode is the (zero-based) bit number of the * highest-order 1 bit, plus one. For example: * * 00011000 01010011 * high low * * The highest-order 1 bit here is bit #12 (where the lowest-order bit * is bit #0). So, we have to encode at least 13 bits total. * * As a special degenerate case, the number 0 requires 1 bit. */
function unsignedBitCount(buffer) { var result = bits.highOrder(1, buffer) + 1; return result ? result : 1; } /** * Common encoder for both signed and unsigned ints. This takes a * bigint-ish buffer, returning an LEB128-encoded buffer. */
function encodeBufferCommon(buffer, signed) { var signBit; var bitCount;
if (signed) { signBit = bits.getSign(buffer); bitCount = signedBitCount(buffer); } else { signBit = 0; bitCount = unsignedBitCount(buffer); }
var byteCount = Math.ceil(bitCount / 7); var result = bufs.alloc(byteCount);
for (var i = 0; i < byteCount; i++) { var payload = bits.extract(buffer, i * 7, 7, signBit); result[i] = payload | 0x80; } // Mask off the top bit of the last byte, to indicate the end of the
// encoding.
result[byteCount - 1] &= 0x7f; return result; } /** * Gets the byte-length of the value encoded in the given buffer at * the given index. */
function encodedLength(encodedBuffer, index) { var result = 0;
while (encodedBuffer[index + result] >= 0x80) { result++; }
result++; // to account for the last byte
if (index + result > encodedBuffer.length) {// FIXME(sven): seems to cause false positives
// throw new Error("integer representation too long");
}
return result; } /** * Common decoder for both signed and unsigned ints. This takes an * LEB128-encoded buffer, returning a bigint-ish buffer. */
function decodeBufferCommon(encodedBuffer, index, signed) { index = index === undefined ? 0 : index; var length = encodedLength(encodedBuffer, index); var bitLength = length * 7; var byteLength = Math.ceil(bitLength / 8); var result = bufs.alloc(byteLength); var outIndex = 0;
while (length > 0) { bits.inject(result, outIndex, 7, encodedBuffer[index]); outIndex += 7; index++; length--; }
var signBit; var signByte;
if (signed) { // Sign-extend the last byte.
var lastByte = result[byteLength - 1]; var endBit = outIndex % 8;
if (endBit !== 0) { var shift = 32 - endBit; // 32 because JS bit ops work on 32-bit ints.
lastByte = result[byteLength - 1] = lastByte << shift >> shift & 0xff; }
signBit = lastByte >> 7; signByte = signBit * 0xff; } else { signBit = 0; signByte = 0; } // Slice off any superfluous bytes, that is, ones that add no meaningful
// bits (because the value would be the same if they were removed).
while (byteLength > 1 && result[byteLength - 1] === signByte && (!signed || result[byteLength - 2] >> 7 === signBit)) { byteLength--; }
result = bufs.resize(result, byteLength); return { value: result, nextIndex: index }; } /* * Exported bindings */
function encodeIntBuffer(buffer) { return encodeBufferCommon(buffer, true); }
function decodeIntBuffer(encodedBuffer, index) { return decodeBufferCommon(encodedBuffer, index, true); }
function encodeInt32(num) { var buf = bufs.alloc(4); buf.writeInt32LE(num, 0); var result = encodeIntBuffer(buf); bufs.free(buf); return result; }
function decodeInt32(encodedBuffer, index) { var result = decodeIntBuffer(encodedBuffer, index); var parsed = bufs.readInt(result.value); var value = parsed.value; bufs.free(result.value);
if (value < MIN_INT32 || value > MAX_INT32) { throw new Error("integer too large"); }
return { value: value, nextIndex: result.nextIndex }; }
function encodeInt64(num) { var buf = bufs.alloc(8); bufs.writeInt64(num, buf); var result = encodeIntBuffer(buf); bufs.free(buf); return result; }
function decodeInt64(encodedBuffer, index) { var result = decodeIntBuffer(encodedBuffer, index);
var value = _long.default.fromBytesLE(result.value, false);
bufs.free(result.value); return { value: value, nextIndex: result.nextIndex, lossy: false }; }
function encodeUIntBuffer(buffer) { return encodeBufferCommon(buffer, false); }
function decodeUIntBuffer(encodedBuffer, index) { return decodeBufferCommon(encodedBuffer, index, false); }
function encodeUInt32(num) { var buf = bufs.alloc(4); buf.writeUInt32LE(num, 0); var result = encodeUIntBuffer(buf); bufs.free(buf); return result; }
function decodeUInt32(encodedBuffer, index) { var result = decodeUIntBuffer(encodedBuffer, index); var parsed = bufs.readUInt(result.value); var value = parsed.value; bufs.free(result.value);
if (value > MAX_UINT32) { throw new Error("integer too large"); }
return { value: value, nextIndex: result.nextIndex }; }
function encodeUInt64(num) { var buf = bufs.alloc(8); bufs.writeUInt64(num, buf); var result = encodeUIntBuffer(buf); bufs.free(buf); return result; }
function decodeUInt64(encodedBuffer, index) { var result = decodeUIntBuffer(encodedBuffer, index);
var value = _long.default.fromBytesLE(result.value, true);
bufs.free(result.value); return { value: value, nextIndex: result.nextIndex, lossy: false }; }
var _default = { decodeInt32: decodeInt32, decodeInt64: decodeInt64, decodeIntBuffer: decodeIntBuffer, decodeUInt32: decodeUInt32, decodeUInt64: decodeUInt64, decodeUIntBuffer: decodeUIntBuffer, encodeInt32: encodeInt32, encodeInt64: encodeInt64, encodeIntBuffer: encodeIntBuffer, encodeUInt32: encodeUInt32, encodeUInt64: encodeUInt64, encodeUIntBuffer: encodeUIntBuffer }; exports.default = _default;
|