|
|
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var leap = _interopRequireWildcard(require("./leap"));
var meta = _interopRequireWildcard(require("./meta"));
var util = _interopRequireWildcard(require("./util"));
/** * Copyright (c) 2014-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ var hasOwn = Object.prototype.hasOwnProperty;
function Emitter(contextId) { _assert["default"].ok(this instanceof Emitter);
util.getTypes().assertIdentifier(contextId); // Used to generate unique temporary names.
this.nextTempId = 0; // In order to make sure the context object does not collide with
// anything in the local scope, we might have to rename it, so we
// refer to it symbolically instead of just assuming that it will be
// called "context".
this.contextId = contextId; // An append-only list of Statements that grows each time this.emit is
// called.
this.listing = []; // A sparse array whose keys correspond to locations in this.listing
// that have been marked as branch/jump targets.
this.marked = [true]; this.insertedLocs = new Set(); // The last location will be marked when this.getDispatchLoop is
// called.
this.finalLoc = this.loc(); // A list of all leap.TryEntry statements emitted.
this.tryEntries = []; // Each time we evaluate the body of a loop, we tell this.leapManager
// to enter a nested loop context that determines the meaning of break
// and continue statements therein.
this.leapManager = new leap.LeapManager(this); }
var Ep = Emitter.prototype; exports.Emitter = Emitter; // Offsets into this.listing that could be used as targets for branches or
// jumps are represented as numeric Literal nodes. This representation has
// the amazingly convenient benefit of allowing the exact value of the
// location to be determined at any time, even after generating code that
// refers to the location.
Ep.loc = function () { var l = util.getTypes().numericLiteral(-1); this.insertedLocs.add(l); return l; };
Ep.getInsertedLocs = function () { return this.insertedLocs; };
Ep.getContextId = function () { return util.getTypes().clone(this.contextId); }; // Sets the exact value of the given location to the offset of the next
// Statement emitted.
Ep.mark = function (loc) { util.getTypes().assertLiteral(loc); var index = this.listing.length;
if (loc.value === -1) { loc.value = index; } else { // Locations can be marked redundantly, but their values cannot change
// once set the first time.
_assert["default"].strictEqual(loc.value, index); }
this.marked[index] = true; return loc; };
Ep.emit = function (node) { var t = util.getTypes();
if (t.isExpression(node)) { node = t.expressionStatement(node); }
t.assertStatement(node); this.listing.push(node); }; // Shorthand for emitting assignment statements. This will come in handy
// for assignments to temporary variables.
Ep.emitAssign = function (lhs, rhs) { this.emit(this.assign(lhs, rhs)); return lhs; }; // Shorthand for an assignment statement.
Ep.assign = function (lhs, rhs) { var t = util.getTypes(); return t.expressionStatement(t.assignmentExpression("=", t.cloneDeep(lhs), rhs)); }; // Convenience function for generating expressions like context.next,
// context.sent, and context.rval.
Ep.contextProperty = function (name, computed) { var t = util.getTypes(); return t.memberExpression(this.getContextId(), computed ? t.stringLiteral(name) : t.identifier(name), !!computed); }; // Shorthand for setting context.rval and jumping to `context.stop()`.
Ep.stop = function (rval) { if (rval) { this.setReturnValue(rval); }
this.jump(this.finalLoc); };
Ep.setReturnValue = function (valuePath) { util.getTypes().assertExpression(valuePath.value); this.emitAssign(this.contextProperty("rval"), this.explodeExpression(valuePath)); };
Ep.clearPendingException = function (tryLoc, assignee) { var t = util.getTypes(); t.assertLiteral(tryLoc); var catchCall = t.callExpression(this.contextProperty("catch", true), [t.clone(tryLoc)]);
if (assignee) { this.emitAssign(assignee, catchCall); } else { this.emit(catchCall); } }; // Emits code for an unconditional jump to the given location, even if the
// exact value of the location is not yet known.
Ep.jump = function (toLoc) { this.emitAssign(this.contextProperty("next"), toLoc); this.emit(util.getTypes().breakStatement()); }; // Conditional jump.
Ep.jumpIf = function (test, toLoc) { var t = util.getTypes(); t.assertExpression(test); t.assertLiteral(toLoc); this.emit(t.ifStatement(test, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()]))); }; // Conditional jump, with the condition negated.
Ep.jumpIfNot = function (test, toLoc) { var t = util.getTypes(); t.assertExpression(test); t.assertLiteral(toLoc); var negatedTest;
if (t.isUnaryExpression(test) && test.operator === "!") { // Avoid double negation.
negatedTest = test.argument; } else { negatedTest = t.unaryExpression("!", test); }
this.emit(t.ifStatement(negatedTest, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()]))); }; // Returns a unique MemberExpression that can be used to store and
// retrieve temporary values. Since the object of the member expression is
// the context object, which is presumed to coexist peacefully with all
// other local variables, and since we just increment `nextTempId`
// monotonically, uniqueness is assured.
Ep.makeTempVar = function () { return this.contextProperty("t" + this.nextTempId++); };
Ep.getContextFunction = function (id) { var t = util.getTypes(); return t.functionExpression(id || null /*Anonymous*/ , [this.getContextId()], t.blockStatement([this.getDispatchLoop()]), false, // Not a generator anymore!
false // Nor an expression.
); }; // Turns this.listing into a loop of the form
//
// while (1) switch (context.next) {
// case 0:
// ...
// case n:
// return context.stop();
// }
//
// Each marked location in this.listing will correspond to one generated
// case statement.
Ep.getDispatchLoop = function () { var self = this; var t = util.getTypes(); var cases = []; var current; // If we encounter a break, continue, or return statement in a switch
// case, we can skip the rest of the statements until the next case.
var alreadyEnded = false; self.listing.forEach(function (stmt, i) { if (self.marked.hasOwnProperty(i)) { cases.push(t.switchCase(t.numericLiteral(i), current = [])); alreadyEnded = false; }
if (!alreadyEnded) { current.push(stmt); if (t.isCompletionStatement(stmt)) alreadyEnded = true; } }); // Now that we know how many statements there will be in this.listing,
// we can finally resolve this.finalLoc.value.
this.finalLoc.value = this.listing.length; cases.push(t.switchCase(this.finalLoc, [// Intentionally fall through to the "end" case...
]), // So that the runtime can jump to the final location without having
// to know its offset, we provide the "end" case as a synonym.
t.switchCase(t.stringLiteral("end"), [// This will check/clear both context.thrown and context.rval.
t.returnStatement(t.callExpression(this.contextProperty("stop"), []))])); return t.whileStatement(t.numericLiteral(1), t.switchStatement(t.assignmentExpression("=", this.contextProperty("prev"), this.contextProperty("next")), cases)); };
Ep.getTryLocsList = function () { if (this.tryEntries.length === 0) { // To avoid adding a needless [] to the majority of runtime.wrap
// argument lists, force the caller to handle this case specially.
return null; }
var t = util.getTypes(); var lastLocValue = 0; return t.arrayExpression(this.tryEntries.map(function (tryEntry) { var thisLocValue = tryEntry.firstLoc.value;
_assert["default"].ok(thisLocValue >= lastLocValue, "try entries out of order");
lastLocValue = thisLocValue; var ce = tryEntry.catchEntry; var fe = tryEntry.finallyEntry; var locs = [tryEntry.firstLoc, // The null here makes a hole in the array.
ce ? ce.firstLoc : null];
if (fe) { locs[2] = fe.firstLoc; locs[3] = fe.afterLoc; }
return t.arrayExpression(locs.map(function (loc) { return loc && t.clone(loc); })); })); }; // All side effects must be realized in order.
// If any subexpression harbors a leap, all subexpressions must be
// neutered of side effects.
// No destructive modification of AST nodes.
Ep.explode = function (path, ignoreResult) { var t = util.getTypes(); var node = path.node; var self = this; t.assertNode(node); if (t.isDeclaration(node)) throw getDeclError(node); if (t.isStatement(node)) return self.explodeStatement(path); if (t.isExpression(node)) return self.explodeExpression(path, ignoreResult);
switch (node.type) { case "Program": return path.get("body").map(self.explodeStatement, self);
case "VariableDeclarator": throw getDeclError(node); // These node types should be handled by their parent nodes
// (ObjectExpression, SwitchStatement, and TryStatement, respectively).
case "Property": case "SwitchCase": case "CatchClause": throw new Error(node.type + " nodes should be handled by their parents");
default: throw new Error("unknown Node of type " + JSON.stringify(node.type)); } };
function getDeclError(node) { return new Error("all declarations should have been transformed into " + "assignments before the Exploder began its work: " + JSON.stringify(node)); }
Ep.explodeStatement = function (path, labelId) { var t = util.getTypes(); var stmt = path.node; var self = this; var before, after, head; t.assertStatement(stmt);
if (labelId) { t.assertIdentifier(labelId); } else { labelId = null; } // Explode BlockStatement nodes even if they do not contain a yield,
// because we don't want or need the curly braces.
if (t.isBlockStatement(stmt)) { path.get("body").forEach(function (path) { self.explodeStatement(path); }); return; }
if (!meta.containsLeap(stmt)) { // Technically we should be able to avoid emitting the statement
// altogether if !meta.hasSideEffects(stmt), but that leads to
// confusing generated code (for instance, `while (true) {}` just
// disappears) and is probably a more appropriate job for a dedicated
// dead code elimination pass.
self.emit(stmt); return; }
switch (stmt.type) { case "ExpressionStatement": self.explodeExpression(path.get("expression"), true); break;
case "LabeledStatement": after = this.loc(); // Did you know you can break from any labeled block statement or
// control structure? Well, you can! Note: when a labeled loop is
// encountered, the leap.LabeledEntry created here will immediately
// enclose a leap.LoopEntry on the leap manager's stack, and both
// entries will have the same label. Though this works just fine, it
// may seem a bit redundant. In theory, we could check here to
// determine if stmt knows how to handle its own label; for example,
// stmt happens to be a WhileStatement and so we know it's going to
// establish its own LoopEntry when we explode it (below). Then this
// LabeledEntry would be unnecessary. Alternatively, we might be
// tempted not to pass stmt.label down into self.explodeStatement,
// because we've handled the label here, but that's a mistake because
// labeled loops may contain labeled continue statements, which is not
// something we can handle in this generic case. All in all, I think a
// little redundancy greatly simplifies the logic of this case, since
// it's clear that we handle all possible LabeledStatements correctly
// here, regardless of whether they interact with the leap manager
// themselves. Also remember that labels and break/continue-to-label
// statements are rare, and all of this logic happens at transform
// time, so it has no additional runtime cost.
self.leapManager.withEntry(new leap.LabeledEntry(after, stmt.label), function () { self.explodeStatement(path.get("body"), stmt.label); }); self.mark(after); break;
case "WhileStatement": before = this.loc(); after = this.loc(); self.mark(before); self.jumpIfNot(self.explodeExpression(path.get("test")), after); self.leapManager.withEntry(new leap.LoopEntry(after, before, labelId), function () { self.explodeStatement(path.get("body")); }); self.jump(before); self.mark(after); break;
case "DoWhileStatement": var first = this.loc(); var test = this.loc(); after = this.loc(); self.mark(first); self.leapManager.withEntry(new leap.LoopEntry(after, test, labelId), function () { self.explode(path.get("body")); }); self.mark(test); self.jumpIf(self.explodeExpression(path.get("test")), first); self.mark(after); break;
case "ForStatement": head = this.loc(); var update = this.loc(); after = this.loc();
if (stmt.init) { // We pass true here to indicate that if stmt.init is an expression
// then we do not care about its result.
self.explode(path.get("init"), true); }
self.mark(head);
if (stmt.test) { self.jumpIfNot(self.explodeExpression(path.get("test")), after); } else {// No test means continue unconditionally.
}
self.leapManager.withEntry(new leap.LoopEntry(after, update, labelId), function () { self.explodeStatement(path.get("body")); }); self.mark(update);
if (stmt.update) { // We pass true here to indicate that if stmt.update is an
// expression then we do not care about its result.
self.explode(path.get("update"), true); }
self.jump(head); self.mark(after); break;
case "TypeCastExpression": return self.explodeExpression(path.get("expression"));
case "ForInStatement": head = this.loc(); after = this.loc(); var keyIterNextFn = self.makeTempVar(); self.emitAssign(keyIterNextFn, t.callExpression(util.runtimeProperty("keys"), [self.explodeExpression(path.get("right"))])); self.mark(head); var keyInfoTmpVar = self.makeTempVar(); self.jumpIf(t.memberExpression(t.assignmentExpression("=", keyInfoTmpVar, t.callExpression(t.cloneDeep(keyIterNextFn), [])), t.identifier("done"), false), after); self.emitAssign(stmt.left, t.memberExpression(t.cloneDeep(keyInfoTmpVar), t.identifier("value"), false)); self.leapManager.withEntry(new leap.LoopEntry(after, head, labelId), function () { self.explodeStatement(path.get("body")); }); self.jump(head); self.mark(after); break;
case "BreakStatement": self.emitAbruptCompletion({ type: "break", target: self.leapManager.getBreakLoc(stmt.label) }); break;
case "ContinueStatement": self.emitAbruptCompletion({ type: "continue", target: self.leapManager.getContinueLoc(stmt.label) }); break;
case "SwitchStatement": // Always save the discriminant into a temporary variable in case the
// test expressions overwrite values like context.sent.
var disc = self.emitAssign(self.makeTempVar(), self.explodeExpression(path.get("discriminant"))); after = this.loc(); var defaultLoc = this.loc(); var condition = defaultLoc; var caseLocs = []; // If there are no cases, .cases might be undefined.
var cases = stmt.cases || [];
for (var i = cases.length - 1; i >= 0; --i) { var c = cases[i]; t.assertSwitchCase(c);
if (c.test) { condition = t.conditionalExpression(t.binaryExpression("===", t.cloneDeep(disc), c.test), caseLocs[i] = this.loc(), condition); } else { caseLocs[i] = defaultLoc; } }
var discriminant = path.get("discriminant"); util.replaceWithOrRemove(discriminant, condition); self.jump(self.explodeExpression(discriminant)); self.leapManager.withEntry(new leap.SwitchEntry(after), function () { path.get("cases").forEach(function (casePath) { var i = casePath.key; self.mark(caseLocs[i]); casePath.get("consequent").forEach(function (path) { self.explodeStatement(path); }); }); }); self.mark(after);
if (defaultLoc.value === -1) { self.mark(defaultLoc);
_assert["default"].strictEqual(after.value, defaultLoc.value); }
break;
case "IfStatement": var elseLoc = stmt.alternate && this.loc(); after = this.loc(); self.jumpIfNot(self.explodeExpression(path.get("test")), elseLoc || after); self.explodeStatement(path.get("consequent"));
if (elseLoc) { self.jump(after); self.mark(elseLoc); self.explodeStatement(path.get("alternate")); }
self.mark(after); break;
case "ReturnStatement": self.emitAbruptCompletion({ type: "return", value: self.explodeExpression(path.get("argument")) }); break;
case "WithStatement": throw new Error("WithStatement not supported in generator functions.");
case "TryStatement": after = this.loc(); var handler = stmt.handler; var catchLoc = handler && this.loc(); var catchEntry = catchLoc && new leap.CatchEntry(catchLoc, handler.param); var finallyLoc = stmt.finalizer && this.loc(); var finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc, after); var tryEntry = new leap.TryEntry(self.getUnmarkedCurrentLoc(), catchEntry, finallyEntry); self.tryEntries.push(tryEntry); self.updateContextPrevLoc(tryEntry.firstLoc); self.leapManager.withEntry(tryEntry, function () { self.explodeStatement(path.get("block"));
if (catchLoc) { if (finallyLoc) { // If we have both a catch block and a finally block, then
// because we emit the catch block first, we need to jump over
// it to the finally block.
self.jump(finallyLoc); } else { // If there is no finally block, then we need to jump over the
// catch block to the fall-through location.
self.jump(after); }
self.updateContextPrevLoc(self.mark(catchLoc)); var bodyPath = path.get("handler.body"); var safeParam = self.makeTempVar(); self.clearPendingException(tryEntry.firstLoc, safeParam); bodyPath.traverse(catchParamVisitor, { getSafeParam: function getSafeParam() { return t.cloneDeep(safeParam); }, catchParamName: handler.param.name }); self.leapManager.withEntry(catchEntry, function () { self.explodeStatement(bodyPath); }); }
if (finallyLoc) { self.updateContextPrevLoc(self.mark(finallyLoc)); self.leapManager.withEntry(finallyEntry, function () { self.explodeStatement(path.get("finalizer")); }); self.emit(t.returnStatement(t.callExpression(self.contextProperty("finish"), [finallyEntry.firstLoc]))); } }); self.mark(after); break;
case "ThrowStatement": self.emit(t.throwStatement(self.explodeExpression(path.get("argument")))); break;
default: throw new Error("unknown Statement of type " + JSON.stringify(stmt.type)); } };
var catchParamVisitor = { Identifier: function Identifier(path, state) { if (path.node.name === state.catchParamName && util.isReference(path)) { util.replaceWithOrRemove(path, state.getSafeParam()); } }, Scope: function Scope(path, state) { if (path.scope.hasOwnBinding(state.catchParamName)) { // Don't descend into nested scopes that shadow the catch
// parameter with their own declarations.
path.skip(); } } };
Ep.emitAbruptCompletion = function (record) { if (!isValidCompletion(record)) { _assert["default"].ok(false, "invalid completion record: " + JSON.stringify(record)); }
_assert["default"].notStrictEqual(record.type, "normal", "normal completions are not abrupt");
var t = util.getTypes(); var abruptArgs = [t.stringLiteral(record.type)];
if (record.type === "break" || record.type === "continue") { t.assertLiteral(record.target); abruptArgs[1] = this.insertedLocs.has(record.target) ? record.target : t.cloneDeep(record.target); } else if (record.type === "return" || record.type === "throw") { if (record.value) { t.assertExpression(record.value); abruptArgs[1] = this.insertedLocs.has(record.value) ? record.value : t.cloneDeep(record.value); } }
this.emit(t.returnStatement(t.callExpression(this.contextProperty("abrupt"), abruptArgs))); };
function isValidCompletion(record) { var type = record.type;
if (type === "normal") { return !hasOwn.call(record, "target"); }
if (type === "break" || type === "continue") { return !hasOwn.call(record, "value") && util.getTypes().isLiteral(record.target); }
if (type === "return" || type === "throw") { return hasOwn.call(record, "value") && !hasOwn.call(record, "target"); }
return false; } // Not all offsets into emitter.listing are potential jump targets. For
// example, execution typically falls into the beginning of a try block
// without jumping directly there. This method returns the current offset
// without marking it, so that a switch case will not necessarily be
// generated for this offset (I say "not necessarily" because the same
// location might end up being marked in the process of emitting other
// statements). There's no logical harm in marking such locations as jump
// targets, but minimizing the number of switch cases keeps the generated
// code shorter.
Ep.getUnmarkedCurrentLoc = function () { return util.getTypes().numericLiteral(this.listing.length); }; // The context.prev property takes the value of context.next whenever we
// evaluate the switch statement discriminant, which is generally good
// enough for tracking the last location we jumped to, but sometimes
// context.prev needs to be more precise, such as when we fall
// successfully out of a try block and into a finally block without
// jumping. This method exists to update context.prev to the freshest
// available location. If we were implementing a full interpreter, we
// would know the location of the current instruction with complete
// precision at all times, but we don't have that luxury here, as it would
// be costly and verbose to set context.prev before every statement.
Ep.updateContextPrevLoc = function (loc) { var t = util.getTypes();
if (loc) { t.assertLiteral(loc);
if (loc.value === -1) { // If an uninitialized location literal was passed in, set its value
// to the current this.listing.length.
loc.value = this.listing.length; } else { // Otherwise assert that the location matches the current offset.
_assert["default"].strictEqual(loc.value, this.listing.length); } } else { loc = this.getUnmarkedCurrentLoc(); } // Make sure context.prev is up to date in case we fell into this try
// statement without jumping to it. TODO Consider avoiding this
// assignment when we know control must have jumped here.
this.emitAssign(this.contextProperty("prev"), loc); };
Ep.explodeExpression = function (path, ignoreResult) { var t = util.getTypes(); var expr = path.node;
if (expr) { t.assertExpression(expr); } else { return expr; }
var self = this; var result; // Used optionally by several cases below.
var after;
function finish(expr) { t.assertExpression(expr);
if (ignoreResult) { self.emit(expr); } else { return expr; } } // If the expression does not contain a leap, then we either emit the
// expression as a standalone statement or return it whole.
if (!meta.containsLeap(expr)) { return finish(expr); } // If any child contains a leap (such as a yield or labeled continue or
// break statement), then any sibling subexpressions will almost
// certainly have to be exploded in order to maintain the order of their
// side effects relative to the leaping child(ren).
var hasLeapingChildren = meta.containsLeap.onlyChildren(expr); // In order to save the rest of explodeExpression from a combinatorial
// trainwreck of special cases, explodeViaTempVar is responsible for
// deciding when a subexpression needs to be "exploded," which is my
// very technical term for emitting the subexpression as an assignment
// to a temporary variable and the substituting the temporary variable
// for the original subexpression. Think of exploded view diagrams, not
// Michael Bay movies. The point of exploding subexpressions is to
// control the precise order in which the generated code realizes the
// side effects of those subexpressions.
function explodeViaTempVar(tempVar, childPath, ignoreChildResult) { _assert["default"].ok(!ignoreChildResult || !tempVar, "Ignoring the result of a child expression but forcing it to " + "be assigned to a temporary variable?");
var result = self.explodeExpression(childPath, ignoreChildResult);
if (ignoreChildResult) {// Side effects already emitted above.
} else if (tempVar || hasLeapingChildren && !t.isLiteral(result)) { // If tempVar was provided, then the result will always be assigned
// to it, even if the result does not otherwise need to be assigned
// to a temporary variable. When no tempVar is provided, we have
// the flexibility to decide whether a temporary variable is really
// necessary. Unfortunately, in general, a temporary variable is
// required whenever any child contains a yield expression, since it
// is difficult to prove (at all, let alone efficiently) whether
// this result would evaluate to the same value before and after the
// yield (see #206). One narrow case where we can prove it doesn't
// matter (and thus we do not need a temporary variable) is when the
// result in question is a Literal value.
result = self.emitAssign(tempVar || self.makeTempVar(), result); }
return result; } // If ignoreResult is true, then we must take full responsibility for
// emitting the expression with all its side effects, and we should not
// return a result.
switch (expr.type) { case "MemberExpression": return finish(t.memberExpression(self.explodeExpression(path.get("object")), expr.computed ? explodeViaTempVar(null, path.get("property")) : expr.property, expr.computed));
case "CallExpression": var calleePath = path.get("callee"); var argsPath = path.get("arguments"); var newCallee; var newArgs; var hasLeapingArgs = argsPath.some(function (argPath) { return meta.containsLeap(argPath.node); }); var injectFirstArg = null;
if (t.isMemberExpression(calleePath.node)) { if (hasLeapingArgs) { // If the arguments of the CallExpression contained any yield
// expressions, then we need to be sure to evaluate the callee
// before evaluating the arguments, but if the callee was a member
// expression, then we must be careful that the object of the
// member expression still gets bound to `this` for the call.
var newObject = explodeViaTempVar( // Assign the exploded callee.object expression to a temporary
// variable so that we can use it twice without reevaluating it.
self.makeTempVar(), calleePath.get("object")); var newProperty = calleePath.node.computed ? explodeViaTempVar(null, calleePath.get("property")) : calleePath.node.property; injectFirstArg = newObject; newCallee = t.memberExpression(t.memberExpression(t.cloneDeep(newObject), newProperty, calleePath.node.computed), t.identifier("call"), false); } else { newCallee = self.explodeExpression(calleePath); } } else { newCallee = explodeViaTempVar(null, calleePath);
if (t.isMemberExpression(newCallee)) { // If the callee was not previously a MemberExpression, then the
// CallExpression was "unqualified," meaning its `this` object
// should be the global object. If the exploded expression has
// become a MemberExpression (e.g. a context property, probably a
// temporary variable), then we need to force it to be unqualified
// by using the (0, object.property)(...) trick; otherwise, it
// will receive the object of the MemberExpression as its `this`
// object.
newCallee = t.sequenceExpression([t.numericLiteral(0), t.cloneDeep(newCallee)]); } }
if (hasLeapingArgs) { newArgs = argsPath.map(function (argPath) { return explodeViaTempVar(null, argPath); }); if (injectFirstArg) newArgs.unshift(injectFirstArg); newArgs = newArgs.map(function (arg) { return t.cloneDeep(arg); }); } else { newArgs = path.node.arguments; }
return finish(t.callExpression(newCallee, newArgs));
case "NewExpression": return finish(t.newExpression(explodeViaTempVar(null, path.get("callee")), path.get("arguments").map(function (argPath) { return explodeViaTempVar(null, argPath); })));
case "ObjectExpression": return finish(t.objectExpression(path.get("properties").map(function (propPath) { if (propPath.isObjectProperty()) { return t.objectProperty(propPath.node.key, explodeViaTempVar(null, propPath.get("value")), propPath.node.computed); } else { return propPath.node; } })));
case "ArrayExpression": return finish(t.arrayExpression(path.get("elements").map(function (elemPath) { if (elemPath.isSpreadElement()) { return t.spreadElement(explodeViaTempVar(null, elemPath.get("argument"))); } else { return explodeViaTempVar(null, elemPath); } })));
case "SequenceExpression": var lastIndex = expr.expressions.length - 1; path.get("expressions").forEach(function (exprPath) { if (exprPath.key === lastIndex) { result = self.explodeExpression(exprPath, ignoreResult); } else { self.explodeExpression(exprPath, true); } }); return result;
case "LogicalExpression": after = this.loc();
if (!ignoreResult) { result = self.makeTempVar(); }
var left = explodeViaTempVar(result, path.get("left"));
if (expr.operator === "&&") { self.jumpIfNot(left, after); } else { _assert["default"].strictEqual(expr.operator, "||");
self.jumpIf(left, after); }
explodeViaTempVar(result, path.get("right"), ignoreResult); self.mark(after); return result;
case "ConditionalExpression": var elseLoc = this.loc(); after = this.loc(); var test = self.explodeExpression(path.get("test")); self.jumpIfNot(test, elseLoc);
if (!ignoreResult) { result = self.makeTempVar(); }
explodeViaTempVar(result, path.get("consequent"), ignoreResult); self.jump(after); self.mark(elseLoc); explodeViaTempVar(result, path.get("alternate"), ignoreResult); self.mark(after); return result;
case "UnaryExpression": return finish(t.unaryExpression(expr.operator, // Can't (and don't need to) break up the syntax of the argument.
// Think about delete a[b].
self.explodeExpression(path.get("argument")), !!expr.prefix));
case "BinaryExpression": return finish(t.binaryExpression(expr.operator, explodeViaTempVar(null, path.get("left")), explodeViaTempVar(null, path.get("right"))));
case "AssignmentExpression": if (expr.operator === "=") { // If this is a simple assignment, the left hand side does not need
// to be read before the right hand side is evaluated, so we can
// avoid the more complicated logic below.
return finish(t.assignmentExpression(expr.operator, self.explodeExpression(path.get("left")), self.explodeExpression(path.get("right")))); }
var lhs = self.explodeExpression(path.get("left")); var temp = self.emitAssign(self.makeTempVar(), lhs); // For example,
//
// x += yield y
//
// becomes
//
// context.t0 = x
// x = context.t0 += yield y
//
// so that the left-hand side expression is read before the yield.
// Fixes https://github.com/facebook/regenerator/issues/345.
return finish(t.assignmentExpression("=", t.cloneDeep(lhs), t.assignmentExpression(expr.operator, t.cloneDeep(temp), self.explodeExpression(path.get("right")))));
case "UpdateExpression": return finish(t.updateExpression(expr.operator, self.explodeExpression(path.get("argument")), expr.prefix));
case "YieldExpression": after = this.loc(); var arg = expr.argument && self.explodeExpression(path.get("argument"));
if (arg && expr.delegate) { var _result = self.makeTempVar();
var _ret = t.returnStatement(t.callExpression(self.contextProperty("delegateYield"), [arg, t.stringLiteral(_result.property.name), after]));
_ret.loc = expr.loc; self.emit(_ret); self.mark(after); return _result; }
self.emitAssign(self.contextProperty("next"), after); var ret = t.returnStatement(t.cloneDeep(arg) || null); // Preserve the `yield` location so that source mappings for the statements
// link back to the yield properly.
ret.loc = expr.loc; self.emit(ret); self.mark(after); return self.contextProperty("sent");
default: throw new Error("unknown Expression of type " + JSON.stringify(expr.type)); } };
|