You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
470 lines
11 KiB
470 lines
11 KiB
import { EPSILON } from "../common";
|
|
import { vec3, vec4, mat4 } from ".";
|
|
|
|
export class quat {
|
|
|
|
public values = new Float32Array(4);
|
|
|
|
static identity = new quat().setIdentity();
|
|
static q0 = new quat();
|
|
static q1 = new quat();
|
|
static q2 = new quat();
|
|
|
|
public get x(): number {
|
|
return this.values[0];
|
|
}
|
|
|
|
public get y(): number {
|
|
return this.values[1];
|
|
}
|
|
|
|
public get z(): number {
|
|
return this.values[2];
|
|
}
|
|
|
|
public get w(): number {
|
|
return this.values[3];
|
|
}
|
|
|
|
public set x(value: number) {
|
|
this.values[0] = value;
|
|
}
|
|
|
|
public set y(value: number) {
|
|
this.values[1] = value;
|
|
}
|
|
|
|
public set z(value: number) {
|
|
this.values[2] = value;
|
|
}
|
|
|
|
public set w(value: number) {
|
|
this.values[3] = value;
|
|
}
|
|
|
|
public constructor() {
|
|
this.setIdentity();
|
|
}
|
|
|
|
/**
|
|
* 设置一个标准四元数
|
|
* @returns
|
|
*/
|
|
public setIdentity(): quat {
|
|
this.x = 0;
|
|
this.y = 0;
|
|
this.z = 0;
|
|
this.w = 1;
|
|
|
|
return this;
|
|
}
|
|
|
|
public at(index: number): number {
|
|
return this.values[index];
|
|
}
|
|
|
|
/**
|
|
* 重置
|
|
*/
|
|
public reset(): void {
|
|
for (let i = 0; i < 4; i++) {
|
|
this.values[i] = 0;
|
|
}
|
|
}
|
|
|
|
public copy(dest: quat | null = null): quat {
|
|
if (!dest) dest = new quat();
|
|
|
|
for (let i = 0; i < 4; i++) {
|
|
dest.values[i] = this.values[i];
|
|
}
|
|
|
|
return dest;
|
|
}
|
|
|
|
public roll(): number {
|
|
let x = this.x,
|
|
y = this.y,
|
|
z = this.z,
|
|
w = this.w;
|
|
|
|
return Math.atan2(2.0 * (x * y + w * z), w * w + x * x - y * y - z * z);
|
|
}
|
|
|
|
public pitch(): number {
|
|
let x = this.x,
|
|
y = this.y,
|
|
z = this.z,
|
|
w = this.w;
|
|
|
|
return Math.atan2(2.0 * (y * z + w * x), w * w - x * x - y * y + z * z);
|
|
}
|
|
|
|
public yaw(): number {
|
|
return Math.asin(2.0 * (this.x * this.z - this.w * this.y));
|
|
}
|
|
|
|
/**
|
|
* 判断是否相等
|
|
* @param vector
|
|
* @param threshold
|
|
* @returns
|
|
*/
|
|
public equals(vector: quat, threshold = EPSILON): boolean {
|
|
for (let i = 0; i < 4; i++) {
|
|
if (Math.abs(this.values[i] - vector.at(i)) > threshold)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* 计算W
|
|
* @returns
|
|
*/
|
|
public calculateW(): quat {
|
|
let x = this.x,
|
|
y = this.y,
|
|
z = this.z;
|
|
|
|
this.w = -(Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z)));
|
|
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* 四元数点乘
|
|
* @param q1
|
|
* @param q2
|
|
* @returns
|
|
*/
|
|
public static dot(q1: quat, q2: quat): number {
|
|
return q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w;
|
|
}
|
|
|
|
/**
|
|
* 四元数求逆
|
|
* @returns
|
|
*/
|
|
public inverse(): quat {
|
|
let dot = quat.dot(this, this);
|
|
|
|
if (!dot) {
|
|
this.setIdentity();
|
|
return this;
|
|
}
|
|
|
|
let invDot = dot ? 1.0 / dot : 0;
|
|
|
|
this.x *= -invDot;
|
|
this.y *= -invDot;
|
|
this.z *= -invDot;
|
|
this.w *= invDot;
|
|
|
|
return this;
|
|
}
|
|
|
|
public conjugate(): quat {
|
|
this.values[0] *= -1;
|
|
this.values[1] *= -1;
|
|
this.values[2] *= -1;
|
|
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* 四元数求模
|
|
* @returns
|
|
*/
|
|
public length(): number {
|
|
let x = this.x,
|
|
y = this.y,
|
|
z = this.z,
|
|
w = this.w;
|
|
|
|
return Math.sqrt(x * x + y * y + z * z + w * w);
|
|
}
|
|
|
|
public normalize(dest: quat | null = null): quat {
|
|
if (!dest) dest = this;
|
|
|
|
let x = this.x,
|
|
y = this.y,
|
|
z = this.z,
|
|
w = this.w;
|
|
|
|
let length = Math.sqrt(x * x + y * y + z * z + w * w);
|
|
|
|
if (!length) {
|
|
dest.x = 0;
|
|
dest.y = 0;
|
|
dest.z = 0;
|
|
dest.w = 0;
|
|
|
|
return dest;
|
|
}
|
|
|
|
length = 1 / length;
|
|
|
|
dest.x = x * length;
|
|
dest.y = y * length;
|
|
dest.z = z * length;
|
|
dest.w = w * length;
|
|
|
|
return dest;
|
|
}
|
|
|
|
public add(other: quat): quat {
|
|
for (let i = 0; i < 4; i++) {
|
|
this.values[i] += other.at(i);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// 这个是左到右结合 this.cross.other
|
|
public multiply(other: quat): quat {
|
|
let q1x = this.values[0],
|
|
q1y = this.values[1],
|
|
q1z = this.values[2],
|
|
q1w = this.values[3];
|
|
|
|
let q2x = other.x,
|
|
q2y = other.y,
|
|
q2z = other.z,
|
|
q2w = other.w;
|
|
|
|
this.x = q1x * q2w + q1w * q2x + q1y * q2z - q1z * q2y;
|
|
this.y = q1y * q2w + q1w * q2y + q1z * q2x - q1x * q2z;
|
|
this.z = q1z * q2w + q1w * q2z + q1x * q2y - q1y * q2x;
|
|
this.w = q1w * q2w - q1x * q2x - q1y * q2y - q1z * q2z;
|
|
|
|
return this;
|
|
}
|
|
|
|
|
|
/**
|
|
* 四元数乘以向量
|
|
* @param vector
|
|
* @param dest
|
|
* @returns
|
|
*/
|
|
public multiplyVec3(vector: vec3, dest: vec3 | null = null): vec3 {
|
|
if (!dest) dest = new vec3();
|
|
|
|
let x = vector.x,
|
|
y = vector.y,
|
|
z = vector.z;
|
|
|
|
let qx = this.x,
|
|
qy = this.y,
|
|
qz = this.z,
|
|
qw = this.w;
|
|
|
|
//
|
|
let ix = qw * x + qy * z - qz * y,
|
|
iy = qw * y + qz * x - qx * z,
|
|
iz = qw * z + qx * y - qy * x,
|
|
iw = -qx * x - qy * y - qz * z;
|
|
|
|
dest.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
|
|
dest.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
|
|
dest.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
|
|
|
|
return dest;
|
|
}
|
|
|
|
public toMat4(dest: mat4 | null = null): mat4 {
|
|
if (!dest) dest = new mat4();
|
|
|
|
let x = this.x,
|
|
y = this.y,
|
|
z = this.z,
|
|
w = this.w,
|
|
|
|
x2 = x + x,
|
|
y2 = y + y,
|
|
z2 = z + z,
|
|
|
|
xx = x * x2,
|
|
xy = x * y2,
|
|
xz = x * z2,
|
|
yy = y * y2,
|
|
yz = y * z2,
|
|
zz = z * z2,
|
|
wx = w * x2,
|
|
wy = w * y2,
|
|
wz = w * z2;
|
|
|
|
dest.set([
|
|
1 - (yy + zz),
|
|
xy + wz,
|
|
xz - wy,
|
|
0,
|
|
|
|
(xy - wz),
|
|
(1 - (xx + zz)),
|
|
(yz + wx),
|
|
0,
|
|
|
|
xz + wy,
|
|
yz - wx,
|
|
1 - (xx + yy),
|
|
0,
|
|
|
|
0,
|
|
0,
|
|
0,
|
|
1
|
|
]);
|
|
|
|
return dest;
|
|
}
|
|
|
|
public static sum(q1: quat, q2: quat, dest: quat | null = null): quat {
|
|
if (!dest) dest = new quat();
|
|
|
|
dest.x = q1.x + q2.x;
|
|
dest.y = q1.y + q2.y;
|
|
dest.z = q1.z + q2.z;
|
|
dest.w = q1.w + q2.w;
|
|
|
|
return dest;
|
|
}
|
|
|
|
public static product(q1: quat, q2: quat, dest: quat | null = null): quat {
|
|
if (!dest) dest = new quat();
|
|
|
|
let q1x = q1.x,
|
|
q1y = q1.y,
|
|
q1z = q1.z,
|
|
q1w = q1.w,
|
|
|
|
q2x = q2.x,
|
|
q2y = q2.y,
|
|
q2z = q2.z,
|
|
q2w = q2.w;
|
|
|
|
dest.x = q1x * q2w + q1w * q2x + q1y * q2z - q1z * q2y;
|
|
dest.y = q1y * q2w + q1w * q2y + q1z * q2x - q1x * q2z;
|
|
dest.z = q1z * q2w + q1w * q2z + q1x * q2y - q1y * q2x;
|
|
dest.w = q1w * q2w - q1x * q2x - q1y * q2y - q1z * q2z;
|
|
|
|
return dest;
|
|
}
|
|
|
|
public static cross(q1: quat, q2: quat, dest: quat | null = null): quat {
|
|
if (!dest) dest = new quat();
|
|
|
|
let q1x = q1.x,
|
|
q1y = q1.y,
|
|
q1z = q1.z,
|
|
q1w = q1.w,
|
|
|
|
q2x = q2.x,
|
|
q2y = q2.y,
|
|
q2z = q2.z,
|
|
q2w = q2.w;
|
|
|
|
dest.x = q1w * q2z + q1z * q2w + q1x * q2y - q1y * q2x;
|
|
dest.y = q1w * q2w - q1x * q2x - q1y * q2y - q1z * q2z;
|
|
dest.z = q1w * q2x + q1x * q2w + q1y * q2z - q1z * q2y;
|
|
dest.w = q1w * q2y + q1y * q2w + q1z * q2x - q1x * q2z;
|
|
|
|
return dest;
|
|
}
|
|
|
|
public static shortMix(q1: quat, q2: quat, time: number, dest: quat | null = null): quat {
|
|
if (!dest) dest = new quat();
|
|
|
|
if (time <= 0.0) {
|
|
q1.copy(q1);
|
|
|
|
return dest;
|
|
} else if (time >= 1.0) {
|
|
q2.copy(dest);
|
|
|
|
return dest;
|
|
}
|
|
|
|
let cos = quat.dot(q1, q2),
|
|
q2a = q2.copy();
|
|
|
|
if (cos < 0.0) {
|
|
q2a.inverse();
|
|
cos = -cos;
|
|
}
|
|
|
|
let k0: number,
|
|
k1: number;
|
|
|
|
if (cos > 0.9999) {
|
|
k0 = 1 - time;
|
|
k1 = 0 + time;
|
|
}
|
|
else {
|
|
let sin: number = Math.sqrt(1 - cos * cos);
|
|
let angle: number = Math.atan2(sin, cos);
|
|
|
|
let oneOverSin: number = 1 / sin;
|
|
|
|
k0 = Math.sin((1 - time) * angle) * oneOverSin;
|
|
k1 = Math.sin((0 + time) * angle) * oneOverSin;
|
|
}
|
|
|
|
dest.x = k0 * q1.x + k1 * q2a.x;
|
|
dest.y = k0 * q1.y + k1 * q2a.y;
|
|
dest.z = k0 * q1.z + k1 * q2a.z;
|
|
dest.w = k0 * q1.w + k1 * q2a.w;
|
|
|
|
return dest;
|
|
}
|
|
|
|
public static mix(q1: quat, q2: quat, time: number, dest: quat | null = null): quat {
|
|
if (!dest) dest = new quat();
|
|
|
|
let cosHalfTheta = q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w;
|
|
|
|
if (Math.abs(cosHalfTheta) >= 1.0) {
|
|
q1.copy(dest);
|
|
return dest;
|
|
}
|
|
|
|
let halfTheta = Math.acos(cosHalfTheta),
|
|
sinHalfTheta = Math.sqrt(1.0 - cosHalfTheta * cosHalfTheta);
|
|
|
|
if (Math.abs(sinHalfTheta) < 0.001) {
|
|
dest.x = q1.x * 0.5 + q2.x * 0.5;
|
|
dest.y = q1.y * 0.5 + q2.y * 0.5;
|
|
dest.z = q1.z * 0.5 + q2.z * 0.5;
|
|
dest.w = q1.w * 0.5 + q2.w * 0.5;
|
|
|
|
return dest;
|
|
}
|
|
|
|
let ratioA = Math.sin((1 - time) * halfTheta) / sinHalfTheta,
|
|
ratioB = Math.sin(time * halfTheta) / sinHalfTheta;
|
|
|
|
dest.x = q1.x * ratioA + q2.x * ratioB;
|
|
dest.y = q1.y * ratioA + q2.y * ratioB;
|
|
dest.z = q1.z * ratioA + q2.z * ratioB;
|
|
dest.w = q1.w * ratioA + q2.w * ratioB;
|
|
|
|
return dest;
|
|
}
|
|
|
|
static fromAxis(axis: vec3, angle: number, dest: quat | null = null): quat {
|
|
if (!dest) dest = new quat();
|
|
|
|
angle *= 0.5;
|
|
let sin = Math.sin(angle);
|
|
|
|
dest.x = axis.x * sin;
|
|
dest.y = axis.y * sin;
|
|
dest.z = axis.z * sin;
|
|
dest.w = Math.cos(angle);
|
|
|
|
return dest;
|
|
}
|
|
}
|